Winter Special Limited Time 65% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: bigdisc65

PDF MLS-C01 Study Guide

Page: 16 / 22
Question 64

A machine learning specialist stores IoT soil sensor data in Amazon DynamoDB table and stores weather event data as JSON files in Amazon S3. The dataset in DynamoDB is 10 GB in size and the dataset in Amazon S3 is 5 GB in size. The specialist wants to train a model on this data to help predict soil moisture levels as a function of weather events using Amazon SageMaker.

Which solution will accomplish the necessary transformation to train the Amazon SageMaker model with the LEAST amount of administrative overhead?

Options:

A.

Launch an Amazon EMR cluster. Create an Apache Hive external table for the DynamoDB table and S3 data. Join the Hive tables and write the results out to Amazon S3.

B.

Crawl the data using AWS Glue crawlers. Write an AWS Glue ETL job that merges the two tables and writes the output to an Amazon Redshift cluster.

C.

Enable Amazon DynamoDB Streams on the sensor table. Write an AWS Lambda function that consumes the stream and appends the results to the existing weather files in Amazon S3.

D.

Crawl the data using AWS Glue crawlers. Write an AWS Glue ETL job that merges the two tables and writes the output in CSV format to Amazon S3.

Question 65

A Data Scientist is developing a machine learning model to predict future patient outcomes based on information collected about each patient and their treatment plans. The model should output a continuous value as its prediction. The data available includes labeled outcomes for a set of 4,000 patients. The study was conducted on a group of individuals over the age of 65 who have a particular disease that is known to worsen with age.

Initial models have performed poorly. While reviewing the underlying data, the Data Scientist notices that, out of 4,000 patient observations, there are 450 where the patient age has been input as 0. The other features for these observations appear normal compared to the rest of the sample population.

How should the Data Scientist correct this issue?

Options:

A.

Drop all records from the dataset where age has been set to 0.

B.

Replace the age field value for records with a value of 0 with the mean or median value from the dataset.

C.

Drop the age feature from the dataset and train the model using the rest of the features.

D.

Use k-means clustering to handle missing features.

Question 66

A Machine Learning Specialist is building a model that will perform time series forecasting using Amazon SageMaker The Specialist has finished training the model and is now planning to perform load testing on the endpoint so they can configure Auto Scaling for the model variant

Which approach will allow the Specialist to review the latency, memory utilization, and CPU utilization during the load test"?

Options:

A.

Review SageMaker logs that have been written to Amazon S3 by leveraging Amazon Athena and Amazon OuickSight to visualize logs as they are being produced

B.

Generate an Amazon CloudWatch dashboard to create a single view for the latency, memory utilization, and CPU utilization metrics that are outputted by Amazon SageMaker

C.

Build custom Amazon CloudWatch Logs and then leverage Amazon ES and Kibana to query and visualize the data as it is generated by Amazon SageMaker

D.

Send Amazon CloudWatch Logs that were generated by Amazon SageMaker lo Amazon ES and use Kibana to query and visualize the log data.

Question 67

A financial company is trying to detect credit card fraud. The company observed that, on average, 2% of credit card transactions were fraudulent. A data scientist trained a classifier on a year's worth of credit card transactions data. The model needs to identify the fraudulent transactions (positives) from the regular ones (negatives). The company's goal is to accurately capture as many positives as possible.

Which metrics should the data scientist use to optimize the model? (Choose two.)

Options:

A.

Specificity

B.

False positive rate

C.

Accuracy

D.

Area under the precision-recall curve

E.

True positive rate

Page: 16 / 22
Exam Code: MLS-C01
Exam Name: AWS Certified Machine Learning - Specialty
Last Update: Nov 21, 2024
Questions: 307
MLS-C01 pdf

MLS-C01 PDF

$28  $80
MLS-C01 Engine

MLS-C01 Testing Engine

$33.25  $95
MLS-C01 PDF + Engine

MLS-C01 PDF + Testing Engine

$45.5  $130