New Year Special 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: Board70

Amazon Web Services MLS-C01 Questions Answers

Page: 5 / 22
Question 20

A machine learning engineer is building a bird classification model. The engineer randomly separates a dataset into a training dataset and a validation dataset. During the training phase, the model achieves very high accuracy. However, the model did not generalize well during validation of the validation dataset. The engineer realizes that the original dataset was imbalanced.

What should the engineer do to improve the validation accuracy of the model?

Options:

A.

Perform stratified sampling on the original dataset.

B.

Acquire additional data about the majority classes in the original dataset.

C.

Use a smaller, randomly sampled version of the training dataset.

D.

Perform systematic sampling on the original dataset.

Question 21

A Machine Learning Specialist is working with multiple data sources containing billions of records that need to be joined. What feature engineering and model development approach should the Specialist take with a dataset this large?

Options:

A.

Use an Amazon SageMaker notebook for both feature engineering and model development

B.

Use an Amazon SageMaker notebook for feature engineering and Amazon ML for model development

C.

Use Amazon EMR for feature engineering and Amazon SageMaker SDK for model development

D.

Use Amazon ML for both feature engineering and model development.

Question 22

An insurance company is creating an application to automate car insurance claims. A machine learning (ML) specialist used an Amazon SageMaker Object Detection - TensorFlow built-in algorithm to train a model to detect scratches and dents in images of cars. After the model was trained, the ML specialist noticed that the model performed better on the training dataset than on the testing dataset.

Which approach should the ML specialist use to improve the performance of the model on the testing data?

Options:

A.

Increase the value of the momentum hyperparameter.

B.

Reduce the value of the dropout_rate hyperparameter.

C.

Reduce the value of the learning_rate hyperparameter.

D.

Increase the value of the L2 hyperparameter.

Question 23

A company is using Amazon Polly to translate plaintext documents to speech for automated company announcements However company acronyms are being mispronounced in the current documents How should a Machine Learning Specialist address this issue for future documents?

Options:

A.

Convert current documents to SSML with pronunciation tags

B.

Create an appropriate pronunciation lexicon.

C.

Output speech marks to guide in pronunciation

D.

Use Amazon Lex to preprocess the text files for pronunciation

Page: 5 / 22
Exam Code: MLS-C01
Exam Name: AWS Certified Machine Learning - Specialty
Last Update: Dec 22, 2024
Questions: 307
MLS-C01 pdf

MLS-C01 PDF

$25.5  $84.99
MLS-C01 Engine

MLS-C01 Testing Engine

$28.5  $94.99
MLS-C01 PDF + Engine

MLS-C01 PDF + Testing Engine

$40.5  $134.99