A Machine Learning Specialist works for a credit card processing company and needs to predict which
transactions may be fraudulent in near-real time. Specifically, the Specialist must train a model that returns the
probability that a given transaction may fraudulent.
How should the Specialist frame this business problem?
A machine learning specialist needs to analyze comments on a news website with users across the globe. The specialist must find the most discussed topics in the comments that are in either English or Spanish.
What steps could be used to accomplish this task? (Choose two.)
A Data Scientist is developing a machine learning model to classify whether a financial transaction is fraudulent. The labeled data available for training consists of 100,000 non-fraudulent observations and 1,000 fraudulent observations.
The Data Scientist applies the XGBoost algorithm to the data, resulting in the following confusion matrix when the trained model is applied to a previously unseen validation dataset. The accuracy of the model is 99.1%, but the Data Scientist has been asked to reduce the number of false negatives.
Which combination of steps should the Data Scientist take to reduce the number of false positive predictions by the model? (Select TWO.)
A company wants to conduct targeted marketing to sell solar panels to homeowners. The company wants to use machine learning (ML) technologies to identify which houses already have solar panels. The company has collected 8,000 satellite images as training data and will use Amazon SageMaker Ground Truth to label the data.
The company has a small internal team that is working on the project. The internal team has no ML expertise and no ML experience.
Which solution will meet these requirements with the LEAST amount of effort from the internal team?