A credit card company wants to identify fraudulent transactions in real time. A data scientist builds a machine learning model for this purpose. The transactional data is captured and stored in Amazon S3. The historic data is already labeled with two classes: fraud (positive) and fair transactions (negative). The data scientist removes all the missing data and builds a classifier by using the XGBoost algorithm in Amazon SageMaker. The model produces the following results:
• True positive rate (TPR): 0.700
• False negative rate (FNR): 0.300
• True negative rate (TNR): 0.977
• False positive rate (FPR): 0.023
• Overall accuracy: 0.949
Which solution should the data scientist use to improve the performance of the model?
A Data Scientist is training a multilayer perception (MLP) on a dataset with multiple classes. The target class of interest is unique compared to the other classes within the dataset, but it does not achieve and acceptable ecall metric. The Data Scientist has already tried varying the number and size of the MLP’s hidden layers,
which has not significantly improved the results. A solution to improve recall must be implemented as quickly as possible.
Which techniques should be used to meet these requirements?
A company's machine learning (ML) specialist is building a computer vision model to classify 10 different traffic signs. The company has stored 100 images of each class in Amazon S3, and the company has another 10.000 unlabeled images. All the images come from dash cameras and are a size of 224 pixels * 224 pixels. After several training runs, the model is overfitting on the training data.
Which actions should the ML specialist take to address this problem? (Select TWO.)
A company is using Amazon SageMaker to build a machine learning (ML) model to predict customer churn based on customer call transcripts. Audio files from customer calls are located in an on-premises VoIP system that has petabytes of recorded calls. The on-premises infrastructure has high-velocity networking and connects to the company's AWS infrastructure through a VPN connection over a 100 Mbps connection.
The company has an algorithm for transcribing customer calls that requires GPUs for inference. The company wants to store these transcriptions in an Amazon S3 bucket in the AWS Cloud for model development.
Which solution should an ML specialist use to deliver the transcriptions to the S3 bucket as quickly as possible?