New Year Special 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: Board70

AWS Certified Specialty MLS-C01 Exam Dumps

Page: 18 / 22
Question 72

A Machine Learning Specialist is designing a system for improving sales for a company. The objective is to use the large amount of information the company has on users' behavior and product preferences to predict which products users would like based on the users' similarity to other users.

What should the Specialist do to meet this objective?

Options:

A.

Build a content-based filtering recommendation engine with Apache Spark ML on Amazon EMR.

B.

Build a collaborative filtering recommendation engine with Apache Spark ML on Amazon EMR.

C.

Build a model-based filtering recommendation engine with Apache Spark ML on Amazon EMR.

D.

Build a combinative filtering recommendation engine with Apache Spark ML on Amazon EMR.

Question 73

A data scientist is training a text classification model by using the Amazon SageMaker built-in BlazingText algorithm. There are 5 classes in the dataset, with 300 samples for category A, 292 samples for category B, 240 samples for category C, 258 samples for category D, and 310 samples for category E.

The data scientist shuffles the data and splits off 10% for testing. After training the model, the data scientist generates confusion matrices for the training and test sets.

What could the data scientist conclude form these results?

Options:

A.

Classes C and D are too similar.

B.

The dataset is too small for holdout cross-validation.

C.

The data distribution is skewed.

D.

The model is overfitting for classes B and E.

Question 74

An agency collects census information within a country to determine healthcare and social program needs by province and city. The census form collects responses for approximately 500 questions from each citizen

Which combination of algorithms would provide the appropriate insights? (Select TWO )

Options:

A.

The factorization machines (FM) algorithm

B.

The Latent Dirichlet Allocation (LDA) algorithm

C.

The principal component analysis (PCA) algorithm

D.

The k-means algorithm

E.

The Random Cut Forest (RCF) algorithm

Question 75

A company wants to use automatic speech recognition (ASR) to transcribe messages that are less than 60 seconds long from a voicemail-style application. The company requires the correct identification of 200 unique product names, some of which have unique spellings or pronunciations.

The company has 4,000 words of Amazon SageMaker Ground Truth voicemail transcripts it can use to customize the chosen ASR model. The company needs to ensure that everyone can update their customizations multiple times each hour.

Which approach will maximize transcription accuracy during the development phase?

Options:

A.

Use a voice-driven Amazon Lex bot to perform the ASR customization. Create customer slots within the bot that specifically identify each of the required product names. Use the Amazon Lex synonym mechanism to provide additional variations of each product name as mis-transcriptions are identified in development.

B.

Use Amazon Transcribe to perform the ASR customization. Analyze the word confidence scores in the transcript, and automatically create or update a custom vocabulary file with any word that has a confidence score below an acceptable threshold value. Use this updated custom vocabulary file in all future transcription tasks.

C.

Create a custom vocabulary file containing each product name with phonetic pronunciations, and use it with Amazon Transcribe to perform the ASR customization. Analyze the transcripts and manually update the custom vocabulary file to include updated or additional entries for those names that are not being correctly identified.

D.

Use the audio transcripts to create a training dataset and build an Amazon Transcribe custom language model. Analyze the transcripts and update the training dataset with a manually corrected version of transcripts where product names are not being transcribed correctly. Create an updated custom language model.

Page: 18 / 22
Exam Code: MLS-C01
Exam Name: AWS Certified Machine Learning - Specialty
Last Update: Dec 22, 2024
Questions: 307
MLS-C01 pdf

MLS-C01 PDF

$25.5  $84.99
MLS-C01 Engine

MLS-C01 Testing Engine

$28.5  $94.99
MLS-C01 PDF + Engine

MLS-C01 PDF + Testing Engine

$40.5  $134.99