New Year Special 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: Board70

AWS Certified Specialty MLS-C01 Exam Questions and Answers PDF

Page: 12 / 22
Question 48

A machine learning (ML) engineer has created a feature repository in Amazon SageMaker Feature Store for the company. The company has AWS accounts for development, integration, and production. The company hosts a feature store in the development account. The company uses Amazon S3 buckets to store feature values offline. The company wants to share features and to allow the integration account and the production account to reuse the features that are in the feature repository.

Which combination of steps will meet these requirements? (Select TWO.)

Options:

A.

Create an IAM role in the development account that the integration account and production account can assume. Attach IAM policies to the role that allow access to the feature repository and the S3 buckets.

B.

Share the feature repository that is associated the S3 buckets from the development account to the integration account and the production account by using AWS Resource Access Manager (AWS RAM).

C.

Use AWS Security Token Service (AWS STS) from the integration account and the production account to retrieve credentials for the development account.

D.

Set up S3 replication between the development S3 buckets and the integration and production S3 buckets.

E.

Create an AWS PrivateLink endpoint in the development account for SageMaker.

Question 49

A company that runs an online library is implementing a chatbot using Amazon Lex to provide book recommendations based on category. This intent is fulfilled by an AWS Lambda function that queries an Amazon DynamoDB table for a list of book titles, given a particular category. For testing, there are only three categories implemented as the custom slot types: "comedy," "adventure,” and "documentary.”

A machine learning (ML) specialist notices that sometimes the request cannot be fulfilled because Amazon Lex cannot understand the category spoken by users with utterances such as "funny," "fun," and "humor." The ML specialist needs to fix the problem without changing the Lambda code or data in DynamoDB.

How should the ML specialist fix the problem?

Options:

A.

Add the unrecognized words in the enumeration values list as new values in the slot type.

B.

Create a new custom slot type, add the unrecognized words to this slot type as enumeration values, and use this slot type for the slot.

C.

Use the AMAZON.SearchQuery built-in slot types for custom searches in the database.

D.

Add the unrecognized words as synonyms in the custom slot type.

Question 50

A data scientist is working on a forecast problem by using a dataset that consists of .csv files that are stored in Amazon S3. The files contain a timestamp variable in the following format:

March 1st, 2020, 08:14pm -

There is a hypothesis about seasonal differences in the dependent variable. This number could be higher or lower for weekdays because some days and hours present varying values, so the day of the week, month, or hour could be an important factor. As a result, the data scientist needs to transform the timestamp into weekdays, month, and day as three separate variables to conduct an analysis.

Which solution requires the LEAST operational overhead to create a new dataset with the added features?

Options:

A.

Create an Amazon EMR cluster. Develop PySpark code that can read the timestamp variable as a string, transform and create the new variables, and save the dataset as a new file in Amazon S3.

B.

Create a processing job in Amazon SageMaker. Develop Python code that can read the timestamp variable as a string, transform and create the new variables, and save the dataset as a new file in Amazon S3.

C.

Create a new flow in Amazon SageMaker Data Wrangler. Import the S3 file, use the Featurize date/time transform to generate the new variables, and save the dataset as a new file in Amazon S3.

D.

Create an AWS Glue job. Develop code that can read the timestamp variable as a string, transform and create the new variables, and save the dataset as a new file in Amazon S3.

Question 51

A trucking company is collecting live image data from its fleet of trucks across the globe. The data is growing rapidly and approximately 100 GB of new data is generated every day. The company wants to explore machine learning uses cases while ensuring the data is only accessible to specific IAM users.

Which storage option provides the most processing flexibility and will allow access control with IAM?

Options:

A.

Use a database, such as Amazon DynamoDB, to store the images, and set the IAM policies to restrict access to only the desired IAM users.

B.

Use an Amazon S3-backed data lake to store the raw images, and set up the permissions using bucket policies.

C.

Setup up Amazon EMR with Hadoop Distributed File System (HDFS) to store the files, and restrict access to the EMR instances using IAM policies.

D.

Configure Amazon EFS with IAM policies to make the data available to Amazon EC2 instances owned by the IAM users.

Page: 12 / 22
Exam Code: MLS-C01
Exam Name: AWS Certified Machine Learning - Specialty
Last Update: Dec 22, 2024
Questions: 307
MLS-C01 pdf

MLS-C01 PDF

$25.5  $84.99
MLS-C01 Engine

MLS-C01 Testing Engine

$28.5  $94.99
MLS-C01 PDF + Engine

MLS-C01 PDF + Testing Engine

$40.5  $134.99