Special Summer Sale 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: Board70

Professional-Machine-Learning-Engineer Exam Dumps - Google Machine Learning Engineer Questions and Answers

Question # 54

You are the lead ML engineer on a mission-critical project that involves analyzing massive datasets using Apache Spark. You need to establish a robust environment that allows your team to rapidly prototype Spark models using Jupyter notebooks. What is the fastest way to achieve this?

Options:

A.

Configure a Compute Engine instance with Spark and use Jupyter notebooks.

B.

Set up a Dataproc cluster with Spark and use Jupyter notebooks.

C.

Set up a Vertex AI Workbench instance with a Spark kernel.

D.

Use Colab Enterprise with a Spark kernel.

Buy Now
Question # 55

Your organization manages an online message board A few months ago, you discovered an increase in toxic language and bullying on the message board. You deployed an automated text classifier that flags certain comments as toxic or harmful. Now some users are reporting that benign comments referencing their religion are being misclassified as abusive Upon further inspection, you find that your classifier's false positive rate is higher for comments that reference certain underrepresented religious groups. Your team has a limited budget and is already overextended. What should you do?

Options:

A.

Add synthetic training data where those phrases are used in non-toxic ways

B.

Remove the model and replace it with human moderation.

C.

Replace your model with a different text classifier.

D.

Raise the threshold for comments to be considered toxic or harmful

Buy Now
Question # 56

You are an ML engineer at a manufacturing company You are creating a classification model for a predictive maintenance use case You need to predict whether a crucial machine will fail in the next three days so that the repair crew has enough time to fix the machine before it breaks. Regular maintenance of the machine is relatively inexpensive, but a failure would be very costly You have trained several binary classifiers to predict whether the machine will fail. where a prediction of 1 means that the ML model predicts a failure.

You are now evaluating each model on an evaluation dataset. You want to choose a model that prioritizes detection while ensuring that more than 50% of the maintenance jobs triggered by your model address an imminent machine failure. Which model should you choose?

Options:

A.

The model with the highest area under the receiver operating characteristic curve (AUC ROC) and precision greater than 0 5

B.

The model with the lowest root mean squared error (RMSE) and recall greater than 0.5.

C.

The model with the highest recall where precision is greater than 0.5.

D.

The model with the highest precision where recall is greater than 0.5.

Buy Now
Question # 57

You have been given a dataset with sales predictions based on your company’s marketing activities. The data is structured and stored in BigQuery, and has been carefully managed by a team of data analysts. You need to prepare a report providing insights into the predictive capabilities of the data. You were asked to run several ML models with different levels of sophistication, including simple models and multilayered neural networks. You only have a few hours to gather the results of your experiments. Which Google Cloud tools should you use to complete this task in the most efficient and self-serviced way?

Options:

A.

Use BigQuery ML to run several regression models, and analyze their performance.

B.

Read the data from BigQuery using Dataproc, and run several models using SparkML.

C.

Use Vertex AI Workbench user-managed notebooks with scikit-learn code for a variety of ML algorithms and performance metrics.

D.

Train a custom TensorFlow model with Vertex AI, reading the data from BigQuery featuring a variety of ML algorithms.

Buy Now
Question # 58

You have trained a DNN regressor with TensorFlow to predict housing prices using a set of predictive features. Your default precision is tf.float64, and you use a standard TensorFlow estimator;

estimator = tf.estimator.DNNRegressor(

feature_columns=[YOUR_LIST_OF_FEATURES],

hidden_units-[1024, 512, 256],

dropout=None)

Your model performs well, but Just before deploying it to production, you discover that your current serving latency is 10ms @ 90 percentile and you currently serve on CPUs. Your production requirements expect a model latency of 8ms @ 90 percentile. You are willing to accept a small decrease in performance in order to reach the latency requirement Therefore your plan is to improve latency while evaluating how much the model's prediction decreases. What should you first try to quickly lower the serving latency?

Options:

A.

Increase the dropout rate to 0.8 in_PREDICT mode by adjusting the TensorFlow Serving parameters

B.

Increase the dropout rate to 0.8 and retrain your model.

C.

Switch from CPU to GPU serving

D.

Apply quantization to your SavedModel by reducing the floating point precision to tf.float16.

Buy Now
Question # 59

You are building a custom image classification model and plan to use Vertex Al Pipelines to implement the end-to-end training. Your dataset consists of images that need to be preprocessed before they can be used to train the model. The preprocessing steps include resizing the images, converting them to grayscale, and extracting features. You have already implemented some Python functions for the preprocessing tasks. Which components should you use in your pipeline'?

Options:

A.

B.

C.

D.

Buy Now
Question # 60

You work at a large organization that recently decided to move their ML and data workloads to Google Cloud. The data engineering team has exported the structured data to a Cloud Storage bucket in Avro format. You need to propose a workflow that performs analytics, creates features, and hosts the features that your ML models use for online prediction How should you configure the pipeline?

Options:

A.

Ingest the Avro files into Cloud Spanner to perform analytics Use a Dataflow pipeline to create the features and store them in BigQuery for online prediction.

B.

Ingest the Avro files into BigQuery to perform analytics Use a Dataflow pipeline to create the features, and store them in Vertex Al Feature Store for online prediction.

C.

Ingest the Avro files into BigQuery to perform analytics Use BigQuery SQL to create features and store them in a separate BigQuery table for online prediction.

D.

Ingest the Avro files into Cloud Spanner to perform analytics. Use a Dataflow pipeline to create the features. and store them in Vertex Al Feature Store for online prediction.

Buy Now
Question # 61

You want to train an AutoML model to predict house prices by using a small public dataset stored in BigQuery. You need to prepare the data and want to use the simplest most efficient approach. What should you do?

Options:

A.

Write a query that preprocesses the data by using BigQuery and creates a new table Create a Vertex Al managed dataset with the new table as the data source.

B.

Use Dataflow to preprocess the data Write the output in TFRecord format to a Cloud Storage bucket.

C.

Write a query that preprocesses the data by using BigQuery Export the query results as CSV files and use

those files to create a Vertex Al managed dataset.

D.

Use a Vertex Al Workbench notebook instance to preprocess the data by using the pandas library Export the data as CSV files, and use those files to create a Vertex Al managed dataset.

Buy Now
Question # 62

You work on an operations team at an international company that manages a large fleet of on-premises servers located in few data centers around the world. Your team collects monitoring data from the servers, including CPU/memory consumption. When an incident occurs on a server, your team is responsible for fixing it. Incident data has not been properly labeled yet. Your management team wants you to build a predictive maintenance solution that uses monitoring data from the VMs to detect potential failures and then alerts the service desk team. What should you do first?

Options:

A.

Train a time-series model to predict the machines’ performance values. Configure an alert if a machine’s actual performance values significantly differ from the predicted performance values.

B.

Implement a simple heuristic (e.g., based on z-score) to label the machines’ historical performance data. Train a model to predict anomalies based on this labeled dataset.

C.

Develop a simple heuristic (e.g., based on z-score) to label the machines’ historical performance data. Test this heuristic in a production environment.

D.

Hire a team of qualified analysts to review and label the machines’ historical performance data. Train a model based on this manually labeled dataset.

Buy Now
Question # 63

You have developed an AutoML tabular classification model that identifies high-value customers who interact with your organization's website.

You plan to deploy the model to a new Vertex Al endpoint that will integrate with your website application. You expect higher traffic to the website during

nights and weekends. You need to configure the model endpoint's deployment settings to minimize latency and cost. What should you do?

Options:

A.

Configure the model deployment settings to use an n1-standard-32 machine type.

B.

Configure the model deployment settings to use an n1-standard-4 machine type. Set the minReplicaCount value to 1 and the maxReplicaCount value to 8.

C.

Configure the model deployment settings to use an n1-standard-4 machine type and a GPU accelerator. Set the minReplicaCount value to 1 and the maxReplicaCount value to 4.

D.

Configure the model deployment settings to use an n1-standard-8 machine type and a GPU accelerator.

Buy Now
Exam Name: Google Professional Machine Learning Engineer
Last Update: Apr 1, 2025
Questions: 285
Professional-Machine-Learning-Engineer pdf

Professional-Machine-Learning-Engineer PDF

$25.5  $84.99
Professional-Machine-Learning-Engineer Engine

Professional-Machine-Learning-Engineer Testing Engine

$28.5  $94.99
Professional-Machine-Learning-Engineer PDF + Engine

Professional-Machine-Learning-Engineer PDF + Testing Engine

$40.5  $134.99