Special Summer Sale 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: Board70

Professional-Machine-Learning-Engineer Exam Dumps - Google Machine Learning Engineer Questions and Answers

Question # 24

You developed a Transformer model in TensorFlow to translate text Your training data includes millions of documents in a Cloud Storage bucket. You plan to use distributed training to reduce training time. You need to configure the training job while minimizing the effort required to modify code and to manage the clusters configuration. What should you do?

Options:

A.

Create a Vertex Al custom training job with GPU accelerators for the second worker pool Use tf .distribute.MultiWorkerMirroredStrategy for distribution.

B.

Create a Vertex Al custom distributed training job with Reduction Server Use N1 high-memory machine type instances for the first and second pools, and use N1 high-CPU machine type instances for the third worker pool.

C.

Create a training job that uses Cloud TPU VMs Use tf.distribute.TPUStrategy for distribution.

D.

Create a Vertex Al custom training job with a single worker pool of A2 GPU machine type instances Use tf .distribute.MirroredStraregy for distribution.

Buy Now
Question # 25

You are training an object detection machine learning model on a dataset that consists of three million X-ray images, each roughly 2 GB in size. You are using Vertex AI Training to run a custom training application on a Compute Engine instance with 32-cores, 128 GB of RAM, and 1 NVIDIA P100 GPU. You notice that model training is taking a very long time. You want to decrease training time without sacrificing model performance. What should you do?

Options:

A.

Increase the instance memory to 512 GB and increase the batch size.

B.

Replace the NVIDIA P100 GPU with a v3-32 TPU in the training job.

C.

Enable early stopping in your Vertex AI Training job.

D.

Use the tf.distribute.Strategy API and run a distributed training job.

Buy Now
Question # 26

You need to quickly build and train a model to predict the sentiment of customer reviews with custom categories without writing code. You do not have enough data to train a model from scratch. The resulting model should have high predictive performance. Which service should you use?

Options:

A.

AutoML Natural Language

B.

Cloud Natural Language API

C.

AI Hub pre-made Jupyter Notebooks

D.

AI Platform Training built-in algorithms

Buy Now
Question # 27

You have developed an application that uses a chain of multiple scikit-learn models to predict the optimal price for your company's products. The workflow logic is shown in the diagram Members of your team use the individual models in other solution workflows. You want to deploy this workflow while ensuring version control for each individual model and the overall workflow Your application needs to be able to scale down to zero. You want to minimize the compute resource utilization and the manual effort required to manage this solution. What should you do?

Options:

A.

Expose each individual model as an endpoint in Vertex Al Endpoints. Create a custom container endpoint to orchestrate the workflow.

B.

Create a custom container endpoint for the workflow that loads each models individual files Track the versions of each individual model in BigQuery.

C.

Expose each individual model as an endpoint in Vertex Al Endpoints. Use Cloud Run to orchestrate the workflow.

D.

Load each model's individual files into Cloud Run Use Cloud Run to orchestrate the workflow Track the versions of each individual model in BigQuery.

Buy Now
Question # 28

You work at a mobile gaming startup that creates online multiplayer games Recently, your company observed an increase in players cheating in the games, leading to a loss of revenue and a poor user experience. You built a binary classification model to determine whether a player cheated after a completed game session, and then send a message to other downstream systems to ban the player that cheated Your model has performed well during testing, and you now need to deploy the model to production You want your serving solution to provide immediate classifications after a completed game session to avoid further loss of revenue. What should you do?

Options:

A.

Import the model into Vertex Al Model Registry. Use the Vertex Batch Prediction service to run batch inference jobs.

B.

Save the model files in a Cloud Storage Bucket Create a Cloud Function to read the model files and make online inference requests on the Cloud Function.

C.

Save the model files in a VM Load the model files each time there is a prediction request and run an inference job on the VM.

D.

Import the model into Vertex Al Model Registry Create a Vertex Al endpoint that hosts the model and make online inference requests.

Buy Now
Question # 29

You are building a TensorFlow model for a financial institution that predicts the impact of consumer spending on inflation globally. Due to the size and nature of the data, your model is long-running across all types of hardware, and you have built frequent checkpointing into the training process. Your organization has asked you to minimize cost. What hardware should you choose?

Options:

A.

A Vertex AI Workbench user-managed notebooks instance running on an n1-standard-16 with 4 NVIDIA P100 GPUs

B.

A Vertex AI Workbench user-managed notebooks instance running on an n1-standard-16 with an NVIDIA P100 GPU

C.

A Vertex AI Workbench user-managed notebooks instance running on an n1-standard-16 with a non-preemptible v3-8 TPU

D.

A Vertex AI Workbench user-managed notebooks instance running on an n1-standard-16 with a preemptible v3-8 TPU

Buy Now
Question # 30

You are working with a dataset that contains customer transactions. You need to build an ML model to predict customer purchase behavior You plan to develop the model in BigQuery ML, and export it to Cloud Storage for online prediction You notice that the input data contains a few categorical features, including product category and payment method You want to deploy the model as quickly as possible. What should you do?

Options:

A.

Use the transform clause with the ML. ONE_HOT_ENCODER function on the categorical features at model creation and select the categorical and non-categorical features.

B.

Use the ML. ONE_HOT_ENCODER function on the categorical features, and select the encoded categorical features and non-categorical features as inputs to create your model.

C.

Use the create model statement and select the categorical and non-categorical features.

D.

Use the ML. ONE_HOT_ENCODER function on the categorical features, and select the encoded categorical features and non-categorical features as inputs to create your model.

Buy Now
Question # 31

You work for a company that is developing an application to help users with meal planning You want to use machine learning to scan a corpus of recipes and extract each ingredient (e g carrot, rice pasta) and each kitchen cookware (e.g. bowl, pot spoon) mentioned Each recipe is saved in an unstructured text file What should you do?

Options:

A.

Create a text dataset on Vertex Al for entity extraction Create two entities called ingredient" and cookware" and label at least 200 examples of each entity Train an AutoML entity extraction model to extract occurrences of these entity types Evaluate performance on a holdout dataset.

B.

Create a multi-label text classification dataset on Vertex Al Create a test dataset and label each recipe that corresponds to its ingredients and cookware Train a multi-class classification model Evaluate the model’s performance on a holdout dataset.

C.

Use the Entity Analysis method of the Natural Language API to extract the ingredients and cookware from each recipe Evaluate the model's performance on a prelabeled dataset.

D.

Create a text dataset on Vertex Al for entity extraction Create as many entities as there are different ingredients and cookware Train an AutoML entity extraction model to extract those entities Evaluate the models performance on a holdout dataset.

Buy Now
Question # 32

You work for a company that sells corporate electronic products to thousands of businesses worldwide. Your company stores historical customer data in BigQuery. You need to build a model that predicts customer lifetime value over the next three years. You want to use the simplest approach to build the model and you want to have access to visualization tools. What should you do?

Options:

A.

Create a Vertex Al Workbench notebook to perform exploratory data analysis. Use IPython magics to create a new BigQuery table with input features Use the BigQuery console to run the create model statement Validate the results by using the ml. evaluate and ml. predict statements.

B.

Run the create model statement from the BigQuery console to create an AutoML model Validate the results by using the ml. evaluate and ml. predict statements.

C.

Create a Vertex Al Workbench notebook to perform exploratory data analysis and create input features Save the features as a CSV file in Cloud Storage Import the CSV file as a new BigQuery table Use the BigQuery console to run the create model statement Validate the results by using the ml. evaluate and ml. predict statements.

D.

Create a Vertex Al Workbench notebook to perform exploratory data analysis Use IPython magics to create a new BigQuery table with input features, create the model and validate the results by using the create model, ml. evaluates, and ml. predict statements.

Buy Now
Question # 33

You work for a credit card company and have been asked to create a custom fraud detection model based on historical data using AutoML Tables. You need to prioritize detection of fraudulent transactions while minimizing false positives. Which optimization objective should you use when training the model?

Options:

A.

An optimization objective that minimizes Log loss

B.

An optimization objective that maximizes the Precision at a Recall value of 0.50

C.

An optimization objective that maximizes the area under the precision-recall curve (AUC PR) value

D.

An optimization objective that maximizes the area under the receiver operating characteristic curve (AUC ROC) value

Buy Now
Exam Name: Google Professional Machine Learning Engineer
Last Update: Apr 1, 2025
Questions: 285
Professional-Machine-Learning-Engineer pdf

Professional-Machine-Learning-Engineer PDF

$25.5  $84.99
Professional-Machine-Learning-Engineer Engine

Professional-Machine-Learning-Engineer Testing Engine

$28.5  $94.99
Professional-Machine-Learning-Engineer PDF + Engine

Professional-Machine-Learning-Engineer PDF + Testing Engine

$40.5  $134.99