GET 70% Discount on All Products
Coupon code: "Board70"
Which of the following threats would be MOST likely mitigated by monitoring assets containing open source libraries for vulnerabilities?
Distributed denial-of-service (DDoS) attack
Zero-day attack
Phishing attempt
Advanced persistent threat (APT) attempt
The threat that would be most likely mitigated by monitoring assets containing open source libraries for vulnerabilities is a zero-day attack. A zero-day attack is a type of attack that exploits a previously unknown or undisclosed vulnerability in a system or application, before the vendor or developer can release a patch or a fix for the vulnerability. A zero-day attack can cause severe damage or compromise to the system or application, as there is no available defense or protection against the attack. A zero-day attack can target any system or application, but it can be more prevalent or effective against those that contain open source libraries, as the open source libraries are publicly available and accessible, and can be analyzed or reverse-engineered by the attackers to discover and exploit the vulnerabilities. Monitoring assets containing open source libraries for vulnerabilities can help to mitigate a zero-day attack, as it can help to identify and report the vulnerabilities in the open source libraries, and to apply the patches or fixes as soon as they are available . References: [CISSP CBK, Fifth Edition, Chapter 3, page 239]; [100 CISSP Questions, Answers and Explanations, Question 18].
An attacker is able to remain indefinitely logged into a exploiting to remain on the web service?
Alert management
Password management
Session management
Identity management (IM)
Session management is the process of controlling and maintaining the state and information of a user’s interaction with a web service. It involves creating, maintaining, and terminating sessions, as well as ensuring their security and integrity. An attacker who is able to remain indefinitely logged into a web service is exploiting a weakness in session management, such as the lack of session expiration, session timeout, or session revocation. Alert management, password management, and identity management (IM) are all related to security, but they do not directly address the issue of session management.
What is the MOST important step during forensic analysis when trying to learn the purpose of an unknown application?
Disable all unnecessary services
Ensure chain of custody
Prepare another backup of the system
Isolate the system from the network
Isolating the system from the network is the most important step during forensic analysis when trying to learn the purpose of an unknown application. An unknown application is an application that is not recognized or authorized by the system or network administrator, and that may have been installed or executed without the user’s knowledge or consent. An unknown application may have various purposes, such as:
Forensic analysis is a process that involves examining and investigating the system or network for any evidence or traces of the unknown application, such as its origin, nature, behavior, and impact. Forensic analysis can provide several benefits, such as:
Isolating the system from the network is the most important step during forensic analysis when trying to learn the purpose of an unknown application, because it can ensure that the system is isolated and protected from any external or internal influences or interferences, and that the forensic analysis is conducted in a safe and controlled environment. Isolating the system from the network can also help to:
The other options are not the most important steps during forensic analysis when trying to learn the purpose of an unknown application, but rather steps that should be done after or along with isolating the system from the network. Disabling all unnecessary services is a step that should be done after isolating the system from the network, because it can ensure that the system is optimized and simplified for the forensic analysis, and that the system resources and functions are not consumed or affected by any irrelevant or redundant services. Ensuring chain of custody is a step that should be done along with isolating the system from the network, because it can ensure that the integrity and authenticity of the evidence are maintained and documented throughout the forensic process, and that the evidence can be traced and verified. Preparing another backup of the system is a step that should be done after isolating the system from the network, because it can ensure that the system data and configuration are preserved and replicated for the forensic analysis, and that the system can be restored and recovered in case of any damage or loss.
Which of the following is a PRIMARY advantage of using a third-party identity service?
Consolidation of multiple providers
Directory synchronization
Web based logon
Automated account management
Consolidation of multiple providers is the primary advantage of using a third-party identity service. A third-party identity service is a service that provides identity and access management (IAM) functions, such as authentication, authorization, and federation, for multiple applications or systems, using a single identity provider (IdP). A third-party identity service can offer various benefits, such as:
Consolidation of multiple providers is the primary advantage of using a third-party identity service, because it can simplify and streamline the IAM architecture and processes, by reducing the number of IdPs and IAM systems that are involved in managing the identities and access for multiple applications or systems. Consolidation of multiple providers can also help to avoid the issues or risks that might arise from having multiple IdPs and IAM systems, such as the inconsistency, redundancy, or conflict of the IAM policies and controls, or the inefficiency, vulnerability, or disruption of the IAM functions.
The other options are not the primary advantages of using a third-party identity service, but rather secondary or specific advantages for different aspects or scenarios of using a third-party identity service. Directory synchronization is an advantage of using a third-party identity service, but it is more relevant for the scenario where the organization has an existing directory service, such as LDAP or Active Directory, that stores and manages the user accounts and attributes, and wants to synchronize them with the third-party identity service, to enable the SSO or federation for the users. Web based logon is an advantage of using a third-party identity service, but it is more relevant for the aspect where the third-party identity service uses a web-based protocol, such as SAML or OAuth, to facilitate the SSO or federation for the users, by redirecting them to a web-based logon page, where they can enter their credentials or consent. Automated account management is an advantage of using a third-party identity service, but it is more relevant for the aspect where the third-party identity service provides the IAM functions, such as provisioning, deprovisioning, or updating, for the user accounts and access rights, using an automated or self-service mechanism, such as SCIM or JIT.
What is the PRIMARY reason for implementing change management?
Certify and approve releases to the environment
Provide version rollbacks for system changes
Ensure that all applications are approved
Ensure accountability for changes to the environment
Ensuring accountability for changes to the environment is the primary reason for implementing change management. Change management is a process that ensures that any changes to the system or network environment, such as the hardware, software, configuration, or documentation, are planned, approved, implemented, and documented in a controlled and consistent manner. Change management can provide several benefits, such as:
Ensuring accountability for changes to the environment is the primary reason for implementing change management, because it can ensure that the changes are authorized, justified, and traceable, and that the parties involved in the changes are responsible and accountable for their actions and results. Accountability can also help to deter or detect any unauthorized or malicious changes that might compromise the system or network environment.
The other options are not the primary reasons for implementing change management, but rather secondary or specific reasons for different aspects or phases of change management. Certifying and approving releases to the environment is a reason for implementing change management, but it is more relevant for the approval phase of change management, which is the phase that involves reviewing and validating the changes and their impacts, and granting or denying the permission to proceed with the changes. Providing version rollbacks for system changes is a reason for implementing change management, but it is more relevant for the implementation phase of change management, which is the phase that involves executing and monitoring the changes and their effects, and providing the backup and recovery options for the changes. Ensuring that all applications are approved is a reason for implementing change management, but it is more relevant for the application changes, which are the changes that affect the software components or services that provide the functionality or logic of the system or network environment.
A continuous information security-monitoring program can BEST reduce risk through which of the following?
Collecting security events and correlating them to identify anomalies
Facilitating system-wide visibility into the activities of critical user accounts
Encompassing people, process, and technology
Logging both scheduled and unscheduled system changes
A continuous information security monitoring program can best reduce risk through encompassing people, process, and technology. A continuous information security monitoring program is a process that involves maintaining the ongoing awareness of the security status, events, and activities of a system or network, by collecting, analyzing, and reporting the security data and information, using various methods and tools. A continuous information security monitoring program can provide several benefits, such as:
A continuous information security monitoring program can best reduce risk through encompassing people, process, and technology, because it can ensure that the continuous information security monitoring program is holistic and comprehensive, and that it covers all the aspects and elements of the system or network security. People, process, and technology are the three pillars of a continuous information security monitoring program, and they represent the following:
The other options are not the best ways to reduce risk through a continuous information security monitoring program, but rather specific or partial ways that can contribute to the risk reduction. Collecting security events and correlating them to identify anomalies is a specific way to reduce risk through a continuous information security monitoring program, but it is not the best way, because it only focuses on one aspect of the security data and information, and it does not address the other aspects, such as the security objectives and requirements, the security controls and measures, and the security feedback and improvement. Facilitating system-wide visibility into the activities of critical user accounts is a partial way to reduce risk through a continuous information security monitoring program, but it is not the best way, because it only covers one element of the system or network security, and it does not cover the other elements, such as the security threats and vulnerabilities, the security incidents and impacts, and the security response and remediation. Logging both scheduled and unscheduled system changes is a specific way to reduce risk through a continuous information security monitoring program, but it is not the best way, because it only focuses on one type of the security events and activities, and it does not focus on the other types, such as the security alerts and notifications, the security analysis and correlation, and the security reporting and documentation.
What would be the MOST cost effective solution for a Disaster Recovery (DR) site given that the organization’s systems cannot be unavailable for more than 24 hours?
Warm site
Hot site
Mirror site
Cold site
A warm site is the most cost effective solution for a disaster recovery (DR) site given that the organization’s systems cannot be unavailable for more than 24 hours. A DR site is a backup facility that can be used to restore the normal operation of the organization’s IT systems and infrastructure after a disruption or disaster. A DR site can have different levels of readiness and functionality, depending on the organization’s recovery objectives and budget. The main types of DR sites are:
A warm site is the most cost effective solution for a disaster recovery (DR) site given that the organization’s systems cannot be unavailable for more than 24 hours, because it can provide a balance between the recovery time and the recovery cost. A warm site can enable the organization to resume its critical functions and operations within a reasonable time frame, without spending too much on the DR site maintenance and operation. A warm site can also provide some flexibility and scalability for the organization to adjust its recovery strategies and resources according to its needs and priorities.
The other options are not the most cost effective solutions for a disaster recovery (DR) site given that the organization’s systems cannot be unavailable for more than 24 hours, but rather solutions that are either too costly or too slow for the organization’s recovery objectives and budget. A hot site is a solution that is too costly for a disaster recovery (DR) site given that the organization’s systems cannot be unavailable for more than 24 hours, because it requires the organization to invest a lot of money on the DR site equipment, software, and services, and to pay for the ongoing operational and maintenance costs. A hot site may be more suitable for the organization’s systems that cannot be unavailable for more than a few hours or minutes, or that have very high availability and performance requirements. A mirror site is a solution that is too costly for a disaster recovery (DR) site given that the organization’s systems cannot be unavailable for more than 24 hours, because it requires the organization to duplicate its entire primary site, with the same hardware, software, data, and applications, and to keep them online and synchronized at all times. A mirror site may be more suitable for the organization’s systems that cannot afford any downtime or data loss, or that have very strict compliance and regulatory requirements. A cold site is a solution that is too slow for a disaster recovery (DR) site given that the organization’s systems cannot be unavailable for more than 24 hours, because it requires the organization to spend a lot of time and effort on the DR site installation, configuration, and restoration, and to rely on other sources of backup data and applications. A cold site may be more suitable for the organization’s systems that can be unavailable for more than a few days or weeks, or that have very low criticality and priority.
An organization is found lacking the ability to properly establish performance indicators for its Web hosting solution during an audit. What would be the MOST probable cause?
Absence of a Business Intelligence (BI) solution
Inadequate cost modeling
Improper deployment of the Service-Oriented Architecture (SOA)
Insufficient Service Level Agreement (SLA)
Insufficient Service Level Agreement (SLA) would be the most probable cause for an organization to lack the ability to properly establish performance indicators for its Web hosting solution during an audit. A Web hosting solution is a service that provides the infrastructure, resources, and tools for hosting and maintaining a website or a web application on the internet. A Web hosting solution can offer various benefits, such as:
A Service Level Agreement (SLA) is a contract or an agreement that defines the expectations, responsibilities, and obligations of the parties involved in a service, such as the service provider and the service consumer. An SLA can include various components, such as:
Insufficient SLA would be the most probable cause for an organization to lack the ability to properly establish performance indicators for its Web hosting solution during an audit, because it could mean that the SLA does not include or specify the appropriate service level indicators or objectives for the Web hosting solution, or that the SLA does not provide or enforce the adequate service level reporting or penalties for the Web hosting solution. This could affect the ability of the organization to measure and assess the Web hosting solution quality, performance, and availability, and to identify and address any issues or risks in the Web hosting solution.
The other options are not the most probable causes for an organization to lack the ability to properly establish performance indicators for its Web hosting solution during an audit, but rather the factors that could affect or improve the Web hosting solution in other ways. Absence of a Business Intelligence (BI) solution is a factor that could affect the ability of the organization to analyze and utilize the data and information from the Web hosting solution, such as the web traffic, behavior, or conversion. A BI solution is a system that involves the collection, integration, processing, and presentation of the data and information from various sources, such as the Web hosting solution, to support the decision making and planning of the organization. However, absence of a BI solution is not the most probable cause for an organization to lack the ability to properly establish performance indicators for its Web hosting solution during an audit, because it does not affect the definition or specification of the performance indicators for the Web hosting solution, but rather the analysis or usage of the performance indicators for the Web hosting solution. Inadequate cost modeling is a factor that could affect the ability of the organization to estimate and optimize the cost and value of the Web hosting solution, such as the web hosting fees, maintenance costs, or return on investment. A cost model is a tool or a method that helps the organization to calculate and compare the cost and value of the Web hosting solution, and to identify and implement the best or most efficient Web hosting solution. However, inadequate cost modeling is not the most probable cause for an organization to lack the ability to properly establish performance indicators for its Web hosting solution during an audit, because it does not affect the definition or specification of the performance indicators for the Web hosting solution, but rather the estimation or optimization of the cost and value of the Web hosting solution. Improper deployment of the Service-Oriented Architecture (SOA) is a factor that could affect the ability of the organization to design and develop the Web hosting solution, such as the web services, components, or interfaces. A SOA is a software architecture that involves the modularization, standardization, and integration of the software components or services that provide the functionality or logic of the Web hosting solution. A SOA can offer various benefits, such as:
However, improper deployment of the SOA is not the most probable cause for an organization to lack the ability to properly establish performance indicators for its Web hosting solution during an audit, because it does not affect the definition or specification of the performance indicators for the Web hosting solution, but rather the design or development of the Web hosting solution.
A Business Continuity Plan/Disaster Recovery Plan (BCP/DRP) will provide which of the following?
Guaranteed recovery of all business functions
Minimization of the need decision making during a crisis
Insurance against litigation following a disaster
Protection from loss of organization resources
Minimization of the need for decision making during a crisis is the main benefit that a Business Continuity Plan/Disaster Recovery Plan (BCP/DRP) will provide. A BCP/DRP is a set of policies, procedures, and resources that enable an organization to continue or resume its critical functions and operations in the event of a disruption or disaster. A BCP/DRP can provide several benefits, such as:
Minimization of the need for decision making during a crisis is the main benefit that a BCP/DRP will provide, because it can ensure that the organization and its staff have a clear and consistent guidance and direction on how to respond and act during a disruption or disaster, and avoid any confusion, uncertainty, or inconsistency that might worsen the situation or impact. A BCP/DRP can also help to reduce the stress and pressure on the organization and its staff during a crisis, and increase their confidence and competence in executing the plans.
The other options are not the benefits that a BCP/DRP will provide, but rather unrealistic or incorrect expectations or outcomes of a BCP/DRP. Guaranteed recovery of all business functions is not a benefit that a BCP/DRP will provide, because it is not possible or feasible to recover all business functions after a disruption or disaster, especially if the disruption or disaster is severe or prolonged. A BCP/DRP can only prioritize and recover the most critical or essential business functions, and may have to suspend or terminate the less critical or non-essential business functions. Insurance against litigation following a disaster is not a benefit that a BCP/DRP will provide, because it is not a guarantee or protection that the organization will not face any legal or regulatory consequences or liabilities after a disruption or disaster, especially if the disruption or disaster is caused by the organization’s negligence or misconduct. A BCP/DRP can only help to mitigate or reduce the legal or regulatory risks, and may have to comply with or report to the relevant authorities or parties. Protection from loss of organization resources is not a benefit that a BCP/DRP will provide, because it is not a prevention or avoidance of any damage or destruction of the organization’s assets or resources during a disruption or disaster, especially if the disruption or disaster is physical or natural. A BCP/DRP can only help to restore or replace the lost or damaged assets or resources, and may have to incur some costs or losses.
With what frequency should monitoring of a control occur when implementing Information Security Continuous Monitoring (ISCM) solutions?
Continuously without exception for all security controls
Before and after each change of the control
At a rate concurrent with the volatility of the security control
Only during system implementation and decommissioning
Monitoring of a control should occur at a rate concurrent with the volatility of the security control when implementing Information Security Continuous Monitoring (ISCM) solutions. ISCM is a process that involves maintaining the ongoing awareness of the security status, events, and activities of a system or network, by collecting, analyzing, and reporting the security data and information, using various methods and tools. ISCM can provide several benefits, such as:
A security control is a measure or mechanism that is implemented to protect the system or network from the security threats or risks, by preventing, detecting, or correcting the security incidents or impacts. A security control can have various types, such as administrative, technical, or physical, and various attributes, such as preventive, detective, or corrective. A security control can also have different levels of volatility, which is the degree or frequency of change or variation of the security control, due to various factors, such as the security requirements, the threat landscape, or the system or network environment.
Monitoring of a control should occur at a rate concurrent with the volatility of the security control when implementing ISCM solutions, because it can ensure that the ISCM solutions can capture and reflect the current and accurate state and performance of the security control, and can identify and report any issues or risks that might affect the security control. Monitoring of a control at a rate concurrent with the volatility of the security control can also help to optimize the ISCM resources and efforts, by allocating them according to the priority and urgency of the security control.
The other options are not the correct frequencies for monitoring of a control when implementing ISCM solutions, but rather incorrect or unrealistic frequencies that might cause problems or inefficiencies for the ISCM solutions. Continuously without exception for all security controls is an incorrect frequency for monitoring of a control when implementing ISCM solutions, because it is not feasible or necessary to monitor all security controls at the same and constant rate, regardless of their volatility or importance. Continuously monitoring all security controls without exception might cause the ISCM solutions to consume excessive or wasteful resources and efforts, and might overwhelm or overload the ISCM solutions with too much or irrelevant data and information. Before and after each change of the control is an incorrect frequency for monitoring of a control when implementing ISCM solutions, because it is not sufficient or timely to monitor the security control only when there is a change of the security control, and not during the normal operation of the security control. Monitoring the security control only before and after each change might cause the ISCM solutions to miss or ignore the security status, events, and activities that occur between the changes of the security control, and might delay or hinder the ISCM solutions from detecting and responding to the security issues or incidents that affect the security control. Only during system implementation and decommissioning is an incorrect frequency for monitoring of a control when implementing ISCM solutions, because it is not appropriate or effective to monitor the security control only during the initial or final stages of the system or network lifecycle, and not during the operational or maintenance stages of the system or network lifecycle. Monitoring the security control only during system implementation and decommissioning might cause the ISCM solutions to neglect or overlook the security status, events, and activities that occur during the regular or ongoing operation of the system or network, and might prevent or limit the ISCM solutions from improving and optimizing the security control.
In a change-controlled environment, which of the following is MOST likely to lead to unauthorized changes to
production programs?
Modifying source code without approval
Promoting programs to production without approval
Developers checking out source code without approval
Developers using Rapid Application Development (RAD) methodologies without approval
In a change-controlled environment, the activity that is most likely to lead to unauthorized changes to production programs is promoting programs to production without approval. A change-controlled environment is an environment that follows a specific process or a procedure for managing and tracking the changes to the hardware and software components of a system or a network, such as the configuration, the functionality, or the security of the system or the network. A change-controlled environment can provide some benefits for security, such as enhancing the performance and the functionality of the system or the network, preventing or mitigating some types of attacks or vulnerabilities, and supporting the audit and the compliance activities. A change-controlled environment can involve various steps and roles, such as:
Promoting programs to production without approval is the activity that is most likely to lead to unauthorized changes to production programs, as it violates the change-controlled environment process and procedure, and it introduces potential risks or issues to the system or the network. Promoting programs to production without approval means that the code or the program of the system or the network is moved or transferred from the development or the testing environment to the production or the operational environment, without obtaining the necessary or the sufficient authorization or consent from the relevant or the responsible parties, such as the change manager, the change review board, or the change advisory board. Promoting programs to production without approval can lead to unauthorized changes to production programs, as it can result in the following consequences:
What is the correct order of steps in an information security assessment?
Place the information security assessment steps on the left next to the numbered boxes on the right in the
correct order.
The correct order of steps in an information security assessment is:
Comprehensive Explanation: An information security assessment is a process of evaluating the security posture of a system, network, or organization. It involves four main steps:
References: CISSP All-in-One Exam Guide, Eighth Edition, Chapter 7: Security Assessment and Testing, page 853; Official (ISC)2 Guide to the CISSP CBK, Fifth Edition, Chapter 6: Security Assessment and Testing, page 791.
Which of the following is a benefit in implementing an enterprise Identity and Access Management (IAM) solution?
Password requirements are simplified.
Risk associated with orphan accounts is reduced.
Segregation of duties is automatically enforced.
Data confidentiality is increased.
A benefit in implementing an enterprise Identity and Access Management (IAM) solution is that the risk associated with orphan accounts is reduced. An orphan account is an account that belongs to a user who has left the organization or changed roles, but the account has not been deactivated or deleted. An orphan account poses a security risk, as it can be exploited by unauthorized users or attackers to gain access to the system or data. An enterprise IAM solution is a system that manages the identification, authentication, authorization, and provisioning of users and devices across the organization. An enterprise IAM solution can help to reduce the risk associated with orphan accounts by automating the account lifecycle management, such as creating, updating, suspending, or deleting accounts based on the user status, role, or policy. An enterprise IAM solution can also help to monitor and audit the account activity, and to detect and remediate any orphan accounts. Password requirements are simplified, segregation of duties is automatically enforced, and data confidentiality is increased are all possible benefits or features of an enterprise IAM solution, but they are not the best answer to the question. Password requirements are simplified by an enterprise IAM solution that supports single sign-on (SSO) or federated identity management (FIM), which allow the user to access multiple systems or applications with one set of credentials. Segregation of duties is automatically enforced by an enterprise IAM solution that implements role-based access control (RBAC) or attribute-based access control (ABAC), which grant or deny access to resources based on the user role or attributes. Data confidentiality is increased by an enterprise IAM solution that encrypts or masks the sensitive data, or applies data loss prevention (DLP) or digital rights management (DRM) policies to the data.
A company receives an email threat informing of an Imminent Distributed Denial of Service (DDoS) attack
targeting its web application, unless ransom is paid. Which of the following techniques BEST addresses that threat?
Deploying load balancers to distribute inbound traffic across multiple data centers
Set Up Web Application Firewalls (WAFs) to filter out malicious traffic
Implementing reverse web-proxies to validate each new inbound connection
Coordinate with and utilize capabilities within Internet Service Provider (ISP)
The best technique to address the threat of an imminent DDoS attack targeting a web application is to coordinate with and utilize the capabilities within the ISP. A DDoS attack is a malicious attempt to disrupt the normal traffic of a targeted server, service, or network by overwhelming the target or its surrounding infrastructure with a flood of Internet traffic. A DDoS attack can cause severe damage to the availability, performance, and reputation of the web application, as well as incur financial losses and legal liabilities. Therefore, it is important to have a DDoS mitigation strategy in place to prevent or minimize the impact of such attacks. One of the most effective ways to mitigate DDoS attacks is to leverage the capabilities of the ISP, as they have more resources, bandwidth, and expertise to handle large volumes of traffic and filter out malicious packets. The ISP can also provide additional services such as traffic monitoring, alerting, reporting, and analysis, as well as assist with the investigation and prosecution of the attackers. The ISP can also work with other ISPs and network operators to coordinate the response and share information about the attack. The other options are not the best techniques to address the threat of an imminent DDoS attack, as they may not be sufficient, timely, or scalable to handle the attack. Deploying load balancers, setting up web application firewalls, and implementing reverse web-proxies are some of the measures that can be taken at the application level to improve the resilience and security of the web application, but they may not be able to cope with the magnitude and complexity of a DDoS attack, especially if the attack targets the network layer or the infrastructure layer. Moreover, these measures may require more time, cost, and effort to implement and maintain, and may not be feasible to deploy in a short notice. References: What is a distributed denial-of-service (DDoS) attack?; What is a DDoS Attack? DDoS Meaning, Definition & Types | Fortinet; Denial-of-service attack - Wikipedia.
Which of the following alarm systems is recommended to detect intrusions through windows in a high-noise, occupied environment?
Acoustic sensor
Motion sensor
Shock sensor
Photoelectric sensor
A shock sensor is a type of alarm system that detects intrusions through windows by sensing the vibrations or impacts caused by breaking glass or forced entry. A shock sensor is recommended for a high-noise, occupied environment, as it is less prone to false alarms caused by ambient noise or movement. A shock sensor can be mounted on the window frame or glass, and can be configured to trigger an alarm or a notification when a certain threshold of vibration or impact is exceeded. A shock sensor can also be combined with other types of sensors, such as magnetic contacts or glass break detectors, to provide a layered defense. An acoustic sensor is a type of alarm system that detects intrusions through windows by listening to the sound of breaking glass or forced entry. An acoustic sensor is not recommended for a high-noise, occupied environment, as it can be easily triggered by other sources of noise, such as music, conversation, or traffic. An acoustic sensor can be placed near the window or in the room, and can be tuned to recognize the frequency and pattern of glass breaking sounds. A motion sensor is a type of alarm system that detects intrusions by sensing the movement or presence of an intruder in a protected area. A motion sensor is not recommended for a high-noise, occupied environment, as it can be triggered by legitimate occupants or authorized visitors. A motion sensor can be installed on the wall, ceiling, or floor, and can use different technologies, such as infrared, ultrasonic, microwave, or video, to detect motion. A photoelectric sensor is a type of alarm system that detects intrusions by sensing the interruption of a beam of light between a transmitter and a receiver. A photoelectric sensor is not recommended for a high-noise, occupied environment, as it can be triggered by objects or animals that cross the beam. A photoelectric sensor can be placed on the window or across the room, and can be configured to trigger an alarm or a notification when the beam is broken.
TESTED 31 Jan 2025
Copyright © 2014-2025 CertsBoard. All Rights Reserved