Black Friday Special 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: Board70

ANS-C01 Exam Questions Tutorials

Page: 4 / 11
Question 16

An insurance company is planning the migration of workloads from its on-premises data center to the AWS Cloud. The company requires end-to-end domain name resolution. Bi-directional DNS resolution between AWS and the existing on-premises environments must be established. The workloads will be migrated into multiple VPCs. The workloads also have dependencies on each other, and not all the workloads will be migrated at the same time.

Which solution meets these requirements?

Options:

A.

Configure a private hosted zone for each application VPC, and create the requisite records. Create a set of Amazon Route 53 Resolver inbound and outbound endpoints in an egress VPC. Define Route 53 Resolver rules to forward requests for the on-premises domains to the on-premises DNS resolver. Associate the application VPC private hosted zones with the egress VPC, and share the Route 53 Resolver rules with the application accounts by using A

B.

Configure a public hosted zone for each application VPC, and create the requisite records. Create a set of Amazon Route 53 Resolver inbound and outbound endpoints in an egress VPC. Define Route 53 Resolver rules to forward requests for the on-premises domains to the on-premises DNS resolver. Associate the application VPC private hosted zones with the egress VPC. and share the Route 53 Resolver rules with the application accounts by using AW

C.

Configure a private hosted zone for each application VPC, and create the requisite records. Create a set of Amazon Route 53 Resolver inbound and outbound endpoints in an egress VPDefine Route 53 Resolver rules to forward requests for the on-premises domains to the on-premises DNS resolver. Associate the application VPC private hosted zones with the egress VPand s

Question 17

A company has deployed a critical application on a fleet of Amazon EC2 instances behind an Application Load Balancer. The application must always be reachable on port 443 from the public internet. The application recently had an outage that resulted from an incorrect change to the EC2 security group.

A network engineer needs to automate a way to verify the network connectivity between the public internet and the EC2 instances whenever a change is made to the security group. The solution also must notify the network engineer when the change affects the connection.

Which solution will meet these requirements?

Options:

A.

Enable VPC Flow Logs on the elastic network interface of each EC2 instance to capture REJECT traffic on port 443. Publish the flow log records to a log group in Amazon CloudWatch Logs. Create a CloudWatch Logs metric filter for the log group for rejected traffic. Create an alarm to notify the network engineer.

B.

Enable VPC Flow Logs on the elastic network interface of each EC2 instance to capture all traffic on port 443. Publish the flow log records to a log group in Amazon CloudWatch Logs. Create a CloudWatch Logs metric filter for the log group for all traffic. Create an alarm to notify the network engineer

C.

Create a VPC Reachability Analyzer path on port 443. Specify the security group as the source. Specify the EC2 instances as the destination. Create an Amazon Simple Notification Service (Amazon SNS) topic to notify the network engineer when a change to the security group affects the connection. Create an AWS Lambda function to start Reachability Analyzer and to publish a message to the SNS topic in case the analyses fail Create an Amazon Ev

D.

Create a VPC Reachability Analyzer path on port 443. Specify the internet gateway of the VPC as the source. Specify the EC2 instances as the destination. Create an Amazon Simple Notification Service (Amazon SNS) topic to notify the network engineer when a change to the security group affects the connection. Create an AWS Lambda function to start Reachability Analyzer and to publish a message to the SNS topic in case the analyses fail. Creat

Question 18

A company is using Amazon Route 53 Resolver DNS Firewall in a VPC to block all domains except domains that are on an approved list. The company is concerned that if DNS Firewall is unresponsive, resources in the VPC might be affected if the network cannot resolve any DNS queries. To maintain application service level agreements, the company needs DNS queries to continue to resolve even if Route 53 Resolver does not receive a response from DNS Firewall.

Which change should a network engineer implement to meet these requirements?

Options:

A.

Update the DNS Firewall VPC configuration to disable fail open for the VPC.

B.

Update the DNS Firewall VPC configuration to enable fail open for the VPC.

C.

Create a new DHCP options set with parameter dns_firewall_fail_open=false. Associate the new DHCP options set with the VPC.

D.

Create a new DHCP options set with parameter dns_firewall_fail_open=true. Associate the new DHCP options set with the VPC.

Question 19

A company has an AWS Direct Connect connection between its on-premises data center in the United States (US) and workloads in the us-east-1 Region. The connection uses a transit VIF to connect the data center to a transit gateway in us-east-1.

The company is opening a new office in Europe with a new on-premises data center in England. A Direct Connect connection will connect the new data center with some workloads that are running in a single VPC in the eu-west-2 Region. The company needs to connect the US data center and us-east-1 with the Europe data center and eu-west-2. A network engineer must establish full connectivity between the data centers and Regions with the lowest possible latency.

How should the network engineer design the network architecture to meet these requirements?

Options:

A.

Connect the VPC in eu-west-2 with the Europe data center by using a Direct Connect gateway and a private VIF. Associate the transit gateway in us-east-1 with the same Direct Connect gateway. Enable SiteLink for the transit VIF and the private VIF.

B.

Connect the VPC in eu-west-2 to a new transit gateway. Connect the Europe data center to the new transit gateway by using a Direct Connect gateway and a new transit VIF. Associate the transit gateway in us-east-1 with the same Direct Connect gateway. Enable SiteLink for both transit VIFs. Peer the two transit gateways.

C.

Connect the VPC in eu-west-2 to a new transit gateway. Connect the Europe data center to the new transit gateway by using a Direct Connect gateway and a new transit VIF. Create a new Direct Connect gateway. Associate the transit gateway in us-east-1 with the new Direct Connect gateway. Enable SiteLink for both transit VIFs. Peer the two transit gateways.

D.

Connect the VPC in eu-west-2 with the Europe data center by using a Direct Connect gateway and a private VIF. Create a new Direct Connect gateway. Associate the transit gateway in us-east-1 with the new Direct Connect gateway. Enable SiteLink for the transit VIF and the private VIF.

Page: 4 / 11
Exam Code: ANS-C01
Exam Name: Amazon AWS Certified Advanced Networking - Specialty
Last Update: Nov 24, 2024
Questions: 153
ANS-C01 pdf

ANS-C01 PDF

$25.5  $84.99
ANS-C01 Engine

ANS-C01 Testing Engine

$28.5  $94.99
ANS-C01 PDF + Engine

ANS-C01 PDF + Testing Engine

$40.5  $134.99