GET 70% Discount on All Products
Coupon code: "Board70"
Which initial action can a network security engineer take to prevent a malicious actor from using a file-sharing application for data exfiltration without impacting users who still need to use file-sharing applications?
Use DNS Security to limit access to file-sharing applications based on job functions.
Use App-ID to limit access to file-sharing applications based on job functions.
Use DNS Security to block all file-sharing applications and uploading abilities.
Use App-ID to block all file-sharing applications and uploading abilities.
To prevent malicious actors from abusing file-sharing applications for data exfiltration,App-IDprovides a granular approach to managing application traffic. Palo Alto Networks'App-IDis a technology that identifies applications traversing the network, regardless of port, protocol, encryption (SSL), or evasive tactics. By leveraging App-ID, security engineers can implement policies that restrict the use of specific applications or functionalities based on job functions, ensuring that only authorized users or groups can use file-sharing applications while blocking unauthorized or malicious usage.
Here’s why the options are evaluated this way:
Option A:DNS Security focuses on identifying and blocking malicious domains. While it plays a critical role in preventing certain attacks (like command-and-control traffic), it is not effective for managing application usage. Hence, this is not the best approach.
Option B (Correct):App-ID provides the ability to identify file-sharing applications (such as Dropbox, Google Drive, or OneDrive) and enforce policies to restrict their use. For example, you can create a security rule allowing file-sharing apps only for specific job functions, such as HR or marketing, while denying them for other users. This targeted approach ensures legitimate business needs are not disrupted, which aligns with the requirement of not impacting valid users.
Option C:Blocking all file-sharing applications outright using DNS Security is a broad measure that will indiscriminately impact legitimate users. This does not meet the requirement of allowing specific users to continue using file-sharing applications.
Option D:While App-ID can block file-sharing applications outright, doing so will prevent legitimate usage and is not aligned with the requirement to allow usage based on job functions.
How to Implement the Solution (Using App-ID):
Identify the relevant file-sharing applications using App-ID in Palo Alto Networks’ predefined application database.
Create security policies that allow these applications only for users or groups defined in your directory (e.g., Active Directory).
Use custom App-ID filters or explicit rules to control specific functionalities of file-sharing applications, such as uploads or downloads.
Monitor traffic to ensure that only authorized users are accessing the applications and that no malicious activity is occurring.
References:
Palo Alto Networks Admin Guide: Application Identification and Usage Policies.
Best Practices for App-ID Configuration: https://docs.paloaltonetworks.com
Which two methods are valid ways to populate user-to-IP mappings? (Choose two.)
XML API
Captive portal
User-ID
SCP log ingestion
Step 1: Understanding User-to-IP Mappings
User-to-IP mappings are the foundation of User-ID, a core feature of Strata Hardware Firewalls (e.g., PA-400 Series, PA-5400 Series). These mappings link a user’s identity (e.g., username) to their device’s IP address, enabling policy enforcement based on user identity rather than just IP. Palo Alto Networks supports multiple methods to populate these mappings, depending on thenetwork environment and authentication mechanisms.
Purpose:Allows the firewall to apply user-based policies, monitor user activity, and generate user-specific logs.
Strata Context:On a PA-5445, User-ID integrates with App-ID and security subscriptions to enforce granular access control.
A large global company plans to acquire 500 NGFWs to replace its legacy firewalls and has a specific requirement for centralized logging and reporting capabilities.
What should a systems engineer recommend?
Combine Panorama for firewall management with Palo Alto Networks' cloud-based Strata Logging Service to offer scalability for the company's logging and reporting infrastructure.
Use Panorama for firewall management and to transfer logs from the 500 firewalls directly to a third-party SIEM for centralized logging and reporting.
Highlight the efficiency of PAN-OS, which employs AI to automatically extract critical logs and generate daily executive reports, and confirm that the purchase of 500 NGFWs is sufficient.
Deploy a pair of M-1000 log collectors in the customer data center, and route logs from all 500 firewalls to the log collectors for centralized logging and reporting.
A large deployment of 500 firewalls requires a scalable, centralized logging and reporting infrastructure. Here's the analysis of each option:
Option A: Combine Panorama for firewall management with Palo Alto Networks' cloud-based Strata Logging Service to offer scalability for the company's logging and reporting infrastructure
TheStrata Logging Service(or Cortex Data Lake) is a cloud-based solution that offers massive scalability for logging and reporting. Combined with Panorama, it allows for centralized log collection, analysis, and policy management without the need for extensive on-premises infrastructure.
This approach is ideal for large-scale environments like the one described in the scenario, as it ensures cost-effectiveness and scalability.
This is the correct recommendation.
Option B: Use Panorama for firewall management and to transfer logs from the 500 firewalls directly to a third-party SIEM for centralized logging and reporting
While third-party SIEM solutions can be integrated with Palo Alto Networks NGFWs, directly transferring logs from 500 firewalls to a SIEM can lead to bottlenecks and scalability issues. Furthermore, relying on third-party solutions may not provide the same level of native integration as the Strata Logging Service.
This is not the ideal recommendation.
Option C: Highlight the efficiency of PAN-OS, which employs AI to automatically extract critical logs and generate daily executive reports, and confirm that the purchase of 500 NGFWs is sufficient
While PAN-OS provides AI-driven insights and reporting, this option does not address the requirement for centralized logging and reporting. It also dismisses the need for additional infrastructure to handle logs from 500 firewalls.
This is incorrect.
Option D: Deploy a pair of M-1000 log collectors in the customer data center, and route logs from all 500 firewalls to the log collectors for centralized logging and reporting
The M-1000 appliance is an on-premises log collector, but it has limitations in terms of scalability and storage capacity when compared to cloud-based options like the Strata Logging Service. Deploying only two M-1000 log collectors for 500 firewalls would result in potential performance and storage challenges.
This is not the best recommendation.
References:
Palo Alto Networks documentation on Panorama
Strata Logging Service (Cortex Data Lake) overview in Palo Alto Networks Docs
Which two compliance frameworks are included with the Premium version of Strata Cloud Manager (SCM)? (Choose two)
Payment Card Industry (PCI)
National Institute of Standards and Technology (NIST)
Center for Internet Security (CIS)
Health Insurance Portability and Accountability Act (HIPAA)
Step 1: Understanding Strata Cloud Manager (SCM) Premium
Strata Cloud Manager is a unified management interface for Strata NGFWs, Prisma Access, and other Palo Alto Networks solutions. ThePremium version(subscription-based) includes advanced features like:
AIOps Premium: Predictive analytics, capacity planning, and compliance reporting.
Compliance Posture Management: Pre-built dashboards and reports for specific regulatory frameworks.
Compliance frameworks in SCM Premium provide visibility into adherence to standards like PCI DSS and NIST, generating actionable insights and audit-ready reports based on firewall configurations, logs, and traffic data.
A security engineer has been tasked with protecting a company's on-premises web servers but is not authorized to purchase a web application firewall (WAF).
Which Palo Alto Networks solution will protect the company from SQL injection zero-day, command injection zero-day, Cross-Site Scripting (XSS) attacks, and IIS exploits?
Threat Prevention and PAN-OS 11.x
Advanced Threat Prevention and PAN-OS 11.x
Threat Prevention, Advanced URL Filtering, and PAN-OS 10.2 (and higher)
Advanced WildFire and PAN-OS 10.0 (and higher)
Protecting web servers from advanced threats like SQL injection, command injection, XSS attacks, and IIS exploits requires a solution capable of deep packet inspection, behavioral analysis, andinline prevention of zero-day attacks. The most effective solution here isAdvanced Threat Prevention (ATP)combined withPAN-OS 11.x.
Why "Advanced Threat Prevention and PAN-OS 11.x" (Correct Answer B)?Advanced Threat Prevention (ATP) enhances traditional threat prevention by usinginline deep learning modelsto detect and block advanced zero-day threats, includingSQL injection, command injection, and XSS attacks. With PAN-OS 11.x, ATP extends its detection capabilities to detect unknown exploits without relying on signature-based methods. This functionality is critical for protecting web servers in scenarios where a dedicated WAF is unavailable.
ATP provides the following benefits:
Inline prevention of zero-day threats using deep learning models.
Real-time detection of attacks like SQL injection and XSS.
Enhanced protection for web server platforms like IIS.
Full integration with the Palo Alto Networks Next-Generation Firewall (NGFW).
Why not "Threat Prevention and PAN-OS 11.x" (Option A)?Threat Prevention relies primarily on signature-based detection for known threats. While it provides basic protection, it lacks the capability to block zero-day attacks using advanced methods like inline deep learning. For zero-day SQL injection and XSS attacks, Threat Prevention alone is insufficient.
Why not "Threat Prevention, Advanced URL Filtering, and PAN-OS 10.2 (and higher)" (Option C)?While this combination includes Advanced URL Filtering (useful for blocking malicious URLs associated with exploits), it still relies onThreat Prevention, which is signature-based. This combination does not provide the zero-day protection needed for advanced injection attacks or XSS vulnerabilities.
Why not "Advanced WildFire and PAN-OS 10.0 (and higher)" (Option D)?Advanced WildFire is focused on analyzing files and executables in a sandbox environment to identify malware. While it is excellent for identifying malware, it is not designed to provide inline prevention for web-based injection attacks or XSS exploits targeting web servers.
Which statement appropriately describes performance tuning Intrusion Prevention System (IPS) functions on a Palo Alto Networks NGFW running Advanced Threat Prevention?
Leave all signatures turned on because they do not impact performance.
Create a new threat profile to use only signatures needed for the environment.
Work with TAC to run a debug and receive exact measurements of performance utilization for the IPS.
To increase performance, disable any threat signatures that do not apply to the environment.
Create a New Threat Profile (Answer B):
Performance tuning inIntrusion Prevention System (IPS)involves ensuring that only the most relevant and necessary signatures are enabled for the specific environment.
Palo Alto Networks allows you to createcustom threat profilesto selectively enable signatures that match the threats most likely to affect the environment. This reduces unnecessary resource usage and ensures optimal performance.
By tailoring the signature set, organizations can focus on real threats without impacting overall throughput and latency.
Why Not A:
Leaving all signatures turned on is not a best practice because it may consume excessive resources, increasing processing time and degrading firewall performance, especially in high-throughput environments.
Why Not C:
While working with TAC for debugging may help identify specific performance bottlenecks, it is not a recommended approach for routine performance tuning. Instead, proactive configuration changes, such as creating tailored threat profiles, should be made.
Why Not D:
Disabling irrelevant threat signatures can improve performance, but this task is effectively accomplished bycreating a new threat profile. Manually disabling signatures one by one is not scalable or efficient.
References from Palo Alto Networks Documentation:
Threat Prevention Best Practices
Custom Threat Profile Configuration
A prospective customer is interested in Palo Alto Networks NGFWs and wants to evaluate the ability to segregate its internal network into unique BGP environments.
Which statement describes the ability of NGFWs to address this need?
It cannot be addressed because PAN-OS does not support it.
It can be addressed by creating multiple eBGP autonomous systems.
It can be addressed with BGP confederations.
It cannot be addressed because BGP must be fully meshed internally to work.
Step 1: Understand the Requirement and Context
Customer Need: Segregate the internal network into unique BGP environments, suggesting multiple isolated or semi-isolated routing domains within a single organization.
BGP Basics:
BGP is a routing protocol used to exchange routing information between autonomous systems (ASes).
eBGP: External BGP, used between different ASes.
iBGP: Internal BGP, used within a single AS, typically requiring a full mesh of peers unless mitigated by techniques like confederations or route reflectors.
Palo Alto NGFW: Supports BGP on virtual routers (VRs) within PAN-OS, enabling advanced routing capabilities for Strata hardware firewalls (e.g., PA-Series).
References: "PAN-OS supports BGP for dynamic routing and network segmentation" (docs.paloaltonetworks.com/pan-os/10-2/pan-os-networking-admin/bgp).
Step 2: Evaluate Each Option
Option A: It cannot be addressed because PAN-OS does not support it
Analysis:
PAN-OS fully supports BGP, including eBGP, iBGP, confederations, and route reflectors, configurable under "Network > Virtual Routers > BGP."
Features like multiple virtual routers and BGP allow network segregation and routing policy control.
This statement contradicts documented capabilities.
Verification:
"Configure BGP on a virtual router for dynamic routing" (docs.paloaltonetworks.com/pan-os/10-2/pan-os-networking-admin/bgp/configure-bgp).
Conclusion: Incorrect—PAN-OS supports BGP and segregation techniques.Not Applicable.
Option B: It can be addressed by creating multiple eBGP autonomous systems
Analysis:
eBGP: Used between distinct ASes, each with a unique AS number (e.g., AS 65001, AS 65002).
Within a single organization, creating multiple eBGP ASes would require:
Assigning unique AS numbers (public or private) to each internal segment.
Treating each segment as a separate AS, peering externally with other segments via eBGP.
Challenges:
Internally, this isn’t practical for a single network—it’s more suited to external peering (e.g., with ISPs).
Requires complex management and public/private AS number allocation, not ideal for internal segregation.
Doesn’t leverage iBGP or confederations, which are designed for internal AS management.
PAN-OS supports eBGP, but this approach misaligns with the intent of internal network segregation.
Verification:
"eBGP peers connect different ASes" (docs.paloaltonetworks.com/pan-os/10-2/pan-os-networking-admin/bgp/bgp-concepts).
Conclusion: Possible but impractical and not the intended BGP solution for internal segregation.Not Optimal.
Option C: It can be addressed with BGP confederations
Description: BGP confederations divide a single AS into sub-ASes (each with a private Confederation Member AS number), reducing the iBGP full-mesh requirement while maintaining a unified external AS.
Analysis:
How It Works:
Single AS (e.g., AS 65000) is split into sub-ASes (e.g., 65001, 65002).
Within each sub-AS, iBGP full mesh or route reflectors are used.
Between sub-ASes, eBGP-like peering (confederation EBGP) connects them, but externally, it appears as one AS.
Segregation:
Each sub-AS can represent a unique BGP environment (e.g., department, site) with its own routing policies.
Firewalls within a sub-AS peer via iBGP; across sub-ASes, they use confederation EBGP.
PAN-OS Support:
Configurable under "Network > Virtual Routers > BGP > Confederation" with a Confederation Member AS number.
Ideal for large internal networks needing segmentation without multiple public AS numbers.
Benefits:
Simplifies internal BGP management.
Aligns with the customer’s need for unique internal BGP environments.
Verification:
"BGP confederations reduce full-mesh burden by dividing an AS into sub-ASes" (docs.paloaltonetworks.com/pan-os/10-2/pan-os-networking-admin/bgp/bgp-confederations).
"Supports unique internal routing domains" (knowledgebase.paloaltonetworks.com).
Conclusion: Directly addresses the requirement with a supported, practical solution.Applicable.
Option D: It cannot be addressed because BGP must be fully meshed internally to work
Analysis:
iBGP Full Mesh: Traditional iBGP requires all routers in an AS to peer with each other, scaling poorly (n(n-1)/2 connections).
Mitigation: PAN-OS supports alternatives:
Route Reflectors: Centralize iBGP peering.
Confederations: Divide the AS into sub-ASes (see Option C).
This statement ignores these features, falsely claiming BGP’s limitation prevents segregation.
Verification:
"Confederations and route reflectors eliminate full-mesh needs" (docs.paloaltonetworks.com/pan-os/10-2/pan-os-networking-admin/bgp/bgp-confederations).
Conclusion: Incorrect—PAN-OS overcomes full-mesh constraints.Not Applicable.
Step 3: Recommendation Justification
Why Option C?
Alignment: Confederations allow the internal network to be segregated into unique BGP environments (sub-ASes) while maintaining a single external AS, perfectly matching the customer’s need.
Scalability: Reduces iBGP full-mesh complexity, ideal for large or segmented internal networks.
PAN-OS Support: Explicitly implemented in BGP configuration, validated by documentation.
Why Not Others?
A: False—PAN-OS supports BGP and segregation.
B: eBGP is for external ASes, not internal segregation; less practical thanconfederations.
D: Misrepresents BGP capabilities; full mesh isn’t required with confederations or route reflectors.
Step 4: Verified References
BGP Confederations: "Divide an AS into sub-ASes for internal segmentation" (docs.paloaltonetworks.com/pan-os/10-2/pan-os-networking-admin/bgp/bgp-confederations).
PAN-OS BGP: "Supports eBGP, iBGP, and confederations for routing flexibility" (paloaltonetworks.com, PAN-OS Networking Guide).
Use Case: "Confederations suit large internal networks" (knowledgebase.paloaltonetworks.com).
Which use case is valid for Palo Alto Networks Next-Generation Firewalls (NGFWs)?
Code-embedded NGFWs provide enhanced internet of things (IoT) security by allowing PAN-OS code to be run on devices that do not support embedded virtual machine (VM) images.
Serverless NGFW code security provides public cloud security for code-only deployments that do not leverage virtual machine (VM) instances or containerized services.
IT/OT segmentation firewalls allow operational technology resources in plant networks to securely interface with IT resources in the corporate network.
PAN-OS GlobalProtect gateways allow companies to run malware and exploit prevention modules on their endpoints without installing endpoint agents.
Palo Alto Networks Next-Generation Firewalls (NGFWs) provide robust security features across a variety of use cases. Let’s analyze each option:
A. Code-embedded NGFWs provide enhanced IoT security by allowing PAN-OS code to be run on devices that do not support embedded VM images.
This statement is incorrect. NGFWs do not operate as "code-embedded" solutions for IoT devices. Instead, they protect IoT devices through advanced threat prevention, device identification, and segmentation capabilities.
B. Serverless NGFW code security provides public cloud security for code-only deployments that do not leverage VM instances or containerized services.
This is not a valid use case. Palo Alto NGFWs provide security for public cloud environments using VM-series firewalls, CN-series (containerized firewalls), and Prisma Cloud for securing serverless architectures. NGFWs do not operate in "code-only" environments.
C. IT/OT segmentation firewalls allow operational technology (OT) resources in plant networks to securely interface with IT resources in the corporate network.
This is a valid use case. Palo Alto NGFWs are widely used in industrial environments to provide IT/OT segmentation, ensuring that operational technology systems in plants or manufacturing facilities can securely communicate with IT networks while protecting against cross-segment threats. Features like App-ID, User-ID, and Threat Prevention are leveraged for this segmentation.
D. PAN-OS GlobalProtect gateways allow companies to run malware and exploit prevention modules on their endpoints without installing endpoint agents.
This is incorrect. GlobalProtect gateways provide secure remote access to corporate networks and extend the NGFW’s threat prevention capabilities to endpoints, but endpoint agents are required to enforce malware and exploit prevention modules.
Key Takeaways:
IT/OT segmentation with NGFWs is a real and critical use case in industries like manufacturing and utilities.
The other options describe features or scenarios that are not applicable or valid for NGFWs.
References:
Palo Alto Networks NGFW Use Cases
Industrial Security with NGFWs
Which two actions can a systems engineer take to discover how Palo Alto Networks can bring value to a customer's business when they show interest in adopting Zero Trust? (Choose two.)
Ask the customer about their internal business flows, such as how their users interact with applications and data across the infrastructure.
Explain how Palo Alto Networks can place virtual NGFWs across the customer's network to ensure assets and traffic are seen and controlled.
Use the Zero Trust Roadshow package to demonstrate to the customer how robust Palo Alto Networks capabilities are in meeting Zero Trust.
Ask the customer about their approach to Zero Trust, explaining that it is a strategy more than it is something they purchase.
To help a customer understand how Palo Alto Networks can bring value when adopting a Zero Trust architecture, the systems engineer must focus on understanding the customer's specific needs and explaining how the Zero Trust strategy aligns with their business goals. Here’s the detailed analysis of each option:
Option A: Ask the customer about their internal business flows, such as how their users interact with applications and data across the infrastructure
Understanding the customer's internal workflows and how their users interact with applications and data is a critical first step in Zero Trust. This information allows the systems engineer to identify potential security gaps and suggest tailored solutions.
This is correct.
Option B: Explain how Palo Alto Networks can place virtual NGFWs across the customer's network to ensure assets and traffic are seen and controlled
While placing NGFWs across the customer's network may be part of the implementation, this approach focuses on the product rather than the customer's strategy. Zero Trust is more about policies and architecture than specific product placement.
This is incorrect.
Option C: Use the Zero Trust Roadshow package to demonstrate to the customer how robust Palo Alto Networks capabilities are in meeting Zero Trust
While demonstrating capabilities is valuable during the later stages of engagement, the initial focus should be on understanding the customer's business requirements rather than showcasing products.
This is incorrect.
Option D: Ask the customer about their approach to Zero Trust, explaining that it is astrategy more than it is something they purchase
Zero Trust is not a product but a strategy that requires a shift in mindset. By discussing their approach, the systems engineer can identify whether the customer understands Zero Trust principles and guide them accordingly.
This is correct.
References:
Palo Alto Networks documentation on Zero Trust
Zero Trust Architecture Principles inNIST 800-207
Which two statements clarify the functionality and purchase options for Palo Alto Networks AIOps for NGFW? (Choose two.)
It is offered in two license tiers: a commercial edition and an enterprise edition.
It is offered in two license tiers: a free version and a premium version.
It uses telemetry data to forecast, preempt, or identify issues, and it uses machine learning (ML) to adjust and enhance the process.
It forwards log data to Advanced WildFire to anticipate, prevent, or identify issues, and it uses machine learning (ML) to refine and adapt to the process.
Palo Alto Networks AIOps for NGFW is a cloud-delivered service that leverages telemetry data and machine learning (ML) to provide proactive operational insights, best practice recommendations, and issue prevention.
Why "It is offered in two license tiers: a free version and a premium version" (Correct Answer B)?AIOps for NGFW is available in two tiers:
Free Tier:Provides basic operational insights and best practices at no additional cost.
Premium Tier:Offers advanced capabilities, such as AI-driven forecasts, proactive issue prevention, and enhanced ML-based recommendations.
Why "It uses telemetry data to forecast, preempt, or identify issues, and it uses machine learning (ML) to adjust and enhance the process" (Correct Answer C)?AIOps uses telemetry data from NGFWs to analyze operational trends, forecast potential problems, and recommend solutions before issues arise. ML continuously refines these insights by learning from real-world data, enhancing accuracy and effectiveness over time.
Why not "It is offered in two license tiers: a commercial edition and an enterprise edition" (Option A)?This is incorrect because the licensing model for AIOps is based on "free" and "premium" tiers, not "commercial" and "enterprise" editions.
Why not "It forwards log data to Advanced WildFire to anticipate, prevent, or identify issues, and it uses machine learning (ML) to refine and adapt to the process" (Option D)?AIOps does not rely on Advanced WildFire for its operation. Instead, it uses telemetry data directly from the NGFWs to perform operational and security analysis.
TESTED 02 Apr 2025
Copyright © 2014-2025 CertsBoard. All Rights Reserved