Winter Special Limited Time 65% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: bigdisc65

Google Professional-Machine-Learning-Engineer Actual Questions

Page: 4 / 21
Question 16

You recently created a new Google Cloud Project After testing that you can submit a Vertex Al Pipeline job from the Cloud Shell, you want to use a Vertex Al Workbench user-managed notebook instance to run your code from that instance You created the instance and ran the code but this time the job fails with an insufficient permissions error. What should you do?

Options:

A.

Ensure that the Workbench instance that you created is in the same region of the Vertex Al Pipelines resources you will use.

B.

Ensure that the Vertex Al Workbench instance is on the same subnetwork of the Vertex Al Pipeline resources that you will use.

C.

Ensure that the Vertex Al Workbench instance is assigned the Identity and Access Management (1AM) Vertex Al User rote.

D.

Ensure that the Vertex Al Workbench instance is assigned the Identity and Access Management (1AM) Notebooks Runner role.

Question 17

You are working on a system log anomaly detection model for a cybersecurity organization. You have developed the model using TensorFlow, and you plan to use it for real-time prediction. You need to create a Dataflow pipeline to ingest data via Pub/Sub and write the results to BigQuery. You want to minimize the serving latency as much as possible. What should you do?

Options:

A.

Containerize the model prediction logic in Cloud Run, which is invoked by Dataflow.

B.

Load the model directly into the Dataflow job as a dependency, and use it for prediction.

C.

Deploy the model to a Vertex AI endpoint, and invoke this endpoint in the Dataflow job.

D.

Deploy the model in a TFServing container on Google Kubernetes Engine, and invoke it in the Dataflow job.

Question 18

You have developed an AutoML tabular classification model that identifies high-value customers who interact with your organization's website.

You plan to deploy the model to a new Vertex Al endpoint that will integrate with your website application. You expect higher traffic to the website during

nights and weekends. You need to configure the model endpoint's deployment settings to minimize latency and cost. What should you do?

Options:

A.

Configure the model deployment settings to use an n1-standard-32 machine type.

B.

Configure the model deployment settings to use an n1-standard-4 machine type. Set the minReplicaCount value to 1 and the maxReplicaCount value to 8.

C.

Configure the model deployment settings to use an n1-standard-4 machine type and a GPU accelerator. Set the minReplicaCount value to 1 and the maxReplicaCount value to 4.

D.

Configure the model deployment settings to use an n1-standard-8 machine type and a GPU accelerator.

Question 19

You are training models in Vertex Al by using data that spans across multiple Google Cloud Projects You need to find track, and compare the performance of the different versions of your models Which Google Cloud services should you include in your ML workflow?

Options:

A.

Dataplex. Vertex Al Feature Store and Vertex Al TensorBoard

B.

Vertex Al Pipelines, Vertex Al Feature Store, and Vertex Al Experiments

C.

Dataplex. Vertex Al Experiments, and Vertex Al ML Metadata

D.

Vertex Al Pipelines: Vertex Al Experiments and Vertex Al Metadata

Page: 4 / 21
Exam Name: Google Professional Machine Learning Engineer
Last Update: Nov 22, 2024
Questions: 285
Professional-Machine-Learning-Engineer pdf

Professional-Machine-Learning-Engineer PDF

$29.75  $84.99
Professional-Machine-Learning-Engineer Engine

Professional-Machine-Learning-Engineer Testing Engine

$33.25  $94.99
Professional-Machine-Learning-Engineer PDF + Engine

Professional-Machine-Learning-Engineer PDF + Testing Engine

$47.25  $134.99