A machine learning engineer has developed a model and registered it using the FeatureStoreClient fs. The model has model URI model_uri. The engineer now needs to perform batch inference on customer-level Spark DataFrame spark_df, but it is missing a few of the static features that were used when training the model. The customer_id column is the primary key of spark_df and the training set used when training and logging the model.
Which of the following code blocks can be used to compute predictions for spark_df when the missing feature values can be found in the Feature Store by searching for features by customer_id?
A machine learning engineer needs to select a deployment strategy for a new machine learning application. The feature values are not available until the time of delivery, and results are needed exceedingly fast for one record at a time.
Which of the following deployment strategies can be used to meet these requirements?
A machine learning engineer is migrating a machine learning pipeline to use Databricks Machine Learning. They have programmatically identified the best run from an MLflow Experiment and stored its URI in themodel_urivariable and its Run ID in therun_idvariable. They have also determined that the model was logged with the name"model". Now, the machine learning engineer wants to register that model in the MLflow Model Registry with the name"best_model".
Which of the following lines of code can they use to register the model to the MLflow Model Registry?
A machine learning engineer is using the following code block as part of a batch deployment pipeline:
Which of the following changes needs to be made so this code block will work when theinferencetable is a stream source?
Which of the following lists all of the model stages are available in the MLflow Model Registry?
Which of the following is a reason for using Jensen-Shannon (JS) distance over a Kolmogorov-Smirnov (KS) test for numeric feature drift detection?
A machine learning engineer wants to programmatically create a new Databricks Job whose schedule depends on the result of some automated tests in a machine learning pipeline.
Which of the following Databricks tools can be used to programmatically create the Job?
Which of the following describes the purpose of the context parameter in the predict method of Python models for MLflow?