Consider flipping a coin for which the probability of heads is p, where p is unknown, and our goa is to estimate p. The obvious approach is to count how many times the coin came up heads and divide by the total number of coin flips. If we flip the coin 1000 times and it comes up heads 367 times, it is very reasonable to estimate p as approximately 0.367. However, suppose we flip the coin only twice and we get heads both times. Is it reasonable to estimate p as 1.0? Intuitively, given that we only flipped the coin twice, it seems a bit
rash to conclude that the coin will always come up heads, and____________is a way of avoiding such rash
conclusions.
Which of the following statement is true for the R square value in the regression model?
You are working on a email spam filtering assignment, while working on this you find there is new word e.g. HadoopExam comes in email, and in your solutions you never come across this word before, hence probability of this words is coming in either email could be zero. So which of the following algorithm can help you to avoid zero probability?
Of all the smokers in a particular district, 40% prefer brand A and 60% prefer brand B. Of those smokers who prefer brand A. 30% are females, and of those who prefer brand B. 40% are female. What is the probability that a randomly selected smoker prefers brand A, given that the person selected is a female?
Which of the following is a best way to solve this problem?
You are doing advanced analytics for the one of the medical application using the regression and you have two variables which are weight and height and they are very important input variables, which cannot be ignored and they are also highly co-related. What is the best solution for that?
You are having 1000 patients' data with the height and age. Where age in years and height in meters. You wanted to create cluster using this two attributes. You wanted to have near equal effect for both the age and height while creating the cluster. What you can do?
A data scientist is asked to implement an article recommendation feature for an on-line magazine.
The magazine does not want to use client tracking technologies such as cookies or reading history. Therefore, only the style and subject matter of the current article is available for making recommendations. All of the magazine's articles are stored in a database in a format suitable for analytics.
Which method should the data scientist try first?