Special Summer Sale 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: Board70

Associate-Data-Practitioner Exam Dumps - Google Cloud Platform Questions and Answers

Question # 14

Your company’s customer support audio files are stored in a Cloud Storage bucket. You plan to analyze the audio files’ metadata and file content within BigQuery to create inference by using BigQuery ML. You need to create a corresponding table in BigQuery that represents the bucket containing the audio files. What should you do?

Options:

A.

Create an external table.

B.

Create a temporary table.

C.

Create a native table.

D.

Create an object table.

Buy Now
Question # 15

Your organization has several datasets in their data warehouse in BigQuery. Several analyst teams in different departments use the datasets to run queries. Your organization is concerned about the variability of their monthly BigQuery costs. You need to identify a solution that creates a fixed budget for costs associated with the queries run by each department. What should you do?

Options:

A.

Create a custom quota for each analyst in BigQuery.

B.

Create a single reservation by using BigQuery editions. Assign all analysts to the reservation.

C.

Assign each analyst to a separate project associated with their department. Create a single reservation by using BigQuery editions. Assign all projects to the reservation.

D.

Assign each analyst to a separate project associated with their department. Create a single reservation for each department by using BigQuery editions. Create assignments for each project in the appropriate reservation.

Buy Now
Question # 16

You are a database administrator managing sales transaction data by region stored in a BigQuery table. You need to ensure that each sales representative can only see the transactions in their region. What should you do?

Options:

A.

Add a policy tag in BigQuery.

B.

Create a row-level access policy.

C.

Create a data masking rule.

D.

Grant the appropriate 1AM permissions on the dataset.

Buy Now
Question # 17

You want to process and load a daily sales CSV file stored in Cloud Storage into BigQuery for downstream reporting. You need to quickly build a scalable data pipeline that transforms the data while providing insights into data quality issues. What should you do?

Options:

A.

Create a batch pipeline in Cloud Data Fusion by using a Cloud Storage source and a BigQuery sink.

B.

Load the CSV file as a table in BigQuery, and use scheduled queries to run SQL transformation scripts.

C.

Load the CSV file as a table in BigQuery. Create a batch pipeline in Cloud Data Fusion by using a BigQuery source and sink.

D.

Create a batch pipeline in Dataflow by using the Cloud Storage CSV file to BigQuery batch template.

Buy Now
Question # 18

Your team wants to create a monthly report to analyze inventory data that is updated daily. You need to aggregate the inventory counts by using only the most recent month of data, and save the results to be used in a Looker Studio dashboard. What should you do?

Options:

A.

Create a materialized view in BigQuery that uses the SUM( ) function and the DATE_SUB( ) function.

B.

Create a saved query in the BigQuery console that uses the SUM( ) function and the DATE_SUB( ) function. Re-run the saved query every month, and save the results to a BigQuery table.

C.

Create a BigQuery table that uses the SUM( ) function and the _PARTITIONDATE filter.

D.

Create a BigQuery table that uses the SUM( ) function and the DATE_DIFF( ) function.

Buy Now
Question # 19

Your organization’s ecommerce website collects user activity logs using a Pub/Sub topic. Your organization’s leadership team wants a dashboard that contains aggregated user engagement metrics. You need to create a solution that transforms the user activity logs into aggregated metrics, while ensuring that the raw data can be easily queried. What should you do?

Options:

A.

Create a Dataflow subscription to the Pub/Sub topic, and transform the activity logs. Load the transformed data into a BigQuery table for reporting.

B.

Create an event-driven Cloud Run function to trigger a data transformation pipeline to run. Load the transformed activity logs into a BigQuery table for reporting.

C.

Create a Cloud Storage subscription to the Pub/Sub topic. Load the activity logs into a bucket using the Avro file format. Use Dataflow to transform the data, and load it into a BigQuery table for reporting.

D.

Create a BigQuery subscription to the Pub/Sub topic, and load the activity logs into the table. Create a materialized view in BigQuery using SQL to transform the data for reporting

Buy Now
Question # 20

Your data science team needs to collaboratively analyze a 25 TB BigQuery dataset to support the development of a machine learning model. You want to use Colab Enterprise notebooks while ensuring efficient data access and minimizing cost. What should you do?

Options:

A.

Export the BigQuery dataset to Google Drive. Load the dataset into the Colab Enterprise notebook using Pandas.

B.

Use BigQuery magic commands within a Colab Enterprise notebook to query and analyze the data.

C.

Create a Dataproc cluster connected to a Colab Enterprise notebook, and use Spark to process the data in BigQuery.

D.

Copy the BigQuery dataset to the local storage of the Colab Enterprise runtime, and analyze the data using Pandas.

Buy Now
Question # 21

You are a Looker analyst. You need to add a new field to your Looker report that generates SQL that will run against your company's database. You do not have the Develop permission. What should you do?

Options:

A.

Create a new field in the LookML layer, refresh your report, and select your new field from the field picker.

B.

Create a calculated field using the Add a field option in Looker Studio, and add it to your report.

C.

Create a table calculation from the field picker in Looker, and add it to your report.

D.

Create a custom field from the field picker in Looker, and add it to your report.

Buy Now
Question # 22

You work for a home insurance company. You are frequently asked to create and save risk reports with charts for specific areas using a publicly available storm event dataset. You want to be able to quickly create and re-run risk reports when new data becomes available. What should you do?

Options:

A.

Export the storm event dataset as a CSV file. Import the file to Google Sheets, and use cell data in the worksheets to create charts.

B.

Copy the storm event dataset into your BigQuery project. Use BigQuery Studio to query and visualize the data in Looker Studio.

C.

Reference and query the storm event dataset using SQL in BigQuery Studio. Export the results to Google Sheets, and use cell data in the worksheets to create charts.

D.

Reference and query the storm event dataset using SQL in a Colab Enterprise notebook. Display the table results and document with Markdown, and use Matplotlib to create charts.

Buy Now
Question # 23

You want to build a model to predict the likelihood of a customer clicking on an online advertisement. You have historical data in BigQuery that includes features such as user demographics, ad placement,and previous click behavior. After training the model, you want to generate predictions on new data. Which model type should you use in BigQuery ML?

Options:

A.

Linear regression

B.

Matrix factorization

C.

Logistic regression

D.

K-means clustering

Buy Now
Exam Name: Google Cloud Associate Data Practitioner (ADP Exam)
Last Update: Apr 4, 2025
Questions: 106
Associate-Data-Practitioner pdf

Associate-Data-Practitioner PDF

$25.5  $84.99
Associate-Data-Practitioner Engine

Associate-Data-Practitioner Testing Engine

$28.5  $94.99
Associate-Data-Practitioner PDF + Engine

Associate-Data-Practitioner PDF + Testing Engine

$40.5  $134.99