Explanation: Splunk indexing is read/write intensive, as it involves reading data from various sources, writing data to disk, and reading data from disk for searching and reporting. Therefore, it is important to select the appropriate disk storage solution for each deployment, based on the performance, reliability, and cost requirements. The recommended RAID setup for Splunk indexers is RAID 10 (1 + 0), as it provides the best balance of performance and reliability. RAID 10 combines the advantages of RAID 1 (mirroring) and RAID 0 (striping), which means that it offers both data redundancy and data distribution. RAID 10 can tolerate multiple disk failures, as long as they are not in the same mirrored pair, and it can improve the read and write speed, as it can access multiple disks in parallel2
High performance SAN (Storage Area Network) can be used for Splunk indexers, but it is not recommended, as it is more expensive and complex than local disks. SAN also introduces additional network latency and dependency, which can affect the performance and availability of Splunk indexers. SAN is more suitable for Splunk search heads, as they are less read/write intensive and more CPU intensive2
NFS (Network File System) should not be used for storing hot and warm buckets, as it can cause data corruption, data loss, and performance degradation. NFS is a network-based file system that allows multiple clients to access the same files on a remote server. NFS is not compatible with Splunk index replication and search head clustering, as it can cause conflicts and inconsistencies among the Splunk instances. NFS is also slower and less reliable than local disks, as it depends on the network bandwidth and availability. NFS can be used for storing cold and frozen buckets, as they are less frequently accessed and less critical for Splunk operations2
Virtualized environments are not usually preferred over bare metal for Splunk indexers, as they can introduce additional overhead and complexity. Virtualized environments can affect the performance and reliability of Splunk indexers, as they share the physical resources and the network with other virtual machines. Virtualized environments can also complicate the monitoring and troubleshooting of Splunk indexers, as they add another layer of abstraction and configuration. Virtualized environments can be used for Splunk indexers, but they require careful planning and tuning to ensure optimal performance and availability2