A company has a data warehouse that contains a table that is named Sales. The company stores the table in Amazon Redshift The table includes a column that is named city_name. The company wants to query the table to find all rows that have a city_name that starts with "San" or "El."
Which SQL query will meet this requirement?
A data engineer runs Amazon Athena queries on data that is in an Amazon S3 bucket. The Athena queries use AWS Glue Data Catalog as a metadata table.
The data engineer notices that the Athena query plans are experiencing a performance bottleneck. The data engineer determines that the cause of the performance bottleneck is the large number of partitions that are in the S3 bucket. The data engineer must resolve the performance bottleneck and reduce Athena query planning time.
Which solutions will meet these requirements? (Choose two.)
A data engineer configured an AWS Glue Data Catalog for data that is stored in Amazon S3 buckets. The data engineer needs to configure the Data Catalog to receive incremental updates.
The data engineer sets up event notifications for the S3 bucket and creates an Amazon Simple Queue Service (Amazon SQS) queue to receive the S3 events.
Which combination of steps should the data engineer take to meet these requirements with LEAST operational overhead? (Select TWO.)
A data engineer is using Amazon Athena to analyze sales data that is in Amazon S3. The data engineer writes a query to retrieve sales amounts for 2023 for several products from a table named sales_data. However, the query does not return results for all of the products that are in the sales_data table. The data engineer needs to troubleshoot the query to resolve the issue.
The data engineer's original query is as follows:
SELECT product_name, sum(sales_amount)
FROM sales_data
WHERE year = 2023
GROUP BY product_name
How should the data engineer modify the Athena query to meet these requirements?